Adjuvant Biophysical Therapies in Osteosarcoma - PubMed (original) (raw)
Review
Adjuvant Biophysical Therapies in Osteosarcoma
Valeria Carina et al. Cancers (Basel). 2019.
Abstract
Osteosarcoma (OS) is a primary bone sarcoma, manifesting as osteogenesis by malignant cells. Nowadays, patients' quality of life has been improved, however continuing high rates of limb amputation, pulmonary metastasis and drug toxicity, remain unresolved issues. Thus, effective osteosarcoma therapies are still required. Recently, the potentialities of biophysical treatments in osteosarcoma have been evaluated and seem to offer a promising future, thanks in this field as they are less invasive. Several approaches have been investigated such as hyperthermia (HT), high intensity focused ultrasound (HIFU), low intensity pulsed ultrasound (LIPUS) and sono- and photodynamic therapies (SDT, PDT). This review aims to summarize in vitro and in vivo studies and clinical trials employing biophysical stimuli in osteosarcoma treatment. The findings underscore how the technological development of biophysical therapies might represent an adjuvant role and, in some cases, alternative role to the surgery, radio and chemotherapy treatment of OS. Among them, the most promising are HIFU and HT, which are already employed in OS patient treatment, while LIPUS/SDT and PDT seem to be particularly interesting for their low toxicity.
Keywords: adjuvant therapies; biophysical stimuli; osteosarcoma.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Figure 1
OS genesis (A). Genetic alterations in germline or sporadic mutation in osteoblasts interfere with the osteogenic process, resulting in an alterate balance between proliferation and differentiation, that cause an uncontrolled cell proliferation. Standard OS treatment Flow Chart (B) according to the NCCN Clinical Practice Guidelines in Oncology Version I.2018.
Figure 2
Physical principles of adjuvant biophysical stimuli. HT treatment (A): The use of different type of HT source alone (alternating magnetic field (AMF) or radiofrequency (RF) or laser) causes a temperature increase reaching the maximum on the body surface that decreases while moving away from the source (Left Panel). The combined use with nanoparticles is able to concentrate the heat into target cells without heating the surrounding tissues (Right Panel). HIFU treatment (B): Thermal effect: the mechanical energy is converted into heat reaching the maximum temperature on tumor by focusing the US in a site-specific manner (Left Panel). Mechanical effect: focused ultrasound causes inertial cavitation, bubble explosion and ROS formation (Right Panel). LIPUS and SDT Treatment (C): LIPUS brings microstreaming improving membrane permeability and drugs uptake, moreover, in combination with sonosensitizer, triggers stable cavitation causing ROS generation. PDT treatment (D): The light beam excites photosensitizer electrons that, returning to the basal level, transmit the energy to nearby molecules inducing two type of reaction: (a) generation of reactive oxygen species (ROS) into the medium; (b) activation of singlet oxygen (1O2) promoting also ROS production.
Similar articles
- A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: from basic to deep.
Yu W, Zhu J, Wang Y, Wang J, Fang W, Xia K, Shao J, Wu M, Liu B, Liang C, Ye C, Tao H. Yu W, et al. Oncotarget. 2017 Jun 13;8(24):39833-39848. doi: 10.18632/oncotarget.16243. Oncotarget. 2017. PMID: 28418855 Free PMC article. Review. - Inhibitory effects of low-intensity pulsed ultrasound sonication on the proliferation of osteosarcoma cells.
Matsuo T, Sato K, Matsui T, Sawada S, Muramatsu Y, Kawanami K, Deie M. Matsuo T, et al. Oncol Lett. 2017 Sep;14(3):3071-3076. doi: 10.3892/ol.2017.6472. Epub 2017 Jun 23. Oncol Lett. 2017. PMID: 28928844 Free PMC article. - Acridine orange inhibits pulmonary metastasis of mouse osteosarcoma.
Satonaka H, Kusuzaki K, Akeda K, Tsujii M, Iino T, Uemura T, Matsubara T, Nakamura T, Asanuma K, Matsumine A, Sudo A. Satonaka H, et al. Anticancer Res. 2011 Dec;31(12):4163-8. Anticancer Res. 2011. PMID: 22199275 - Synergistic interaction of 5-aminolevulinic acid-based photodynamic therapy with simultaneous hyperthermia in an osteosarcoma tumor model.
Yanase S, Nomura J, Matsumura Y, Nagata T, Fujii T, Tagawa T. Yanase S, et al. Int J Oncol. 2006 Aug;29(2):365-73. Int J Oncol. 2006. PMID: 16820878 - High-intensity focused ultrasound: noninvasive treatment for local unresectable recurrence of osteosarcoma.
Yu W, Tang L, Lin F, Yao Y, Shen Z, Zhou X. Yu W, et al. Surg Oncol. 2015 Mar;24(1):9-15. doi: 10.1016/j.suronc.2014.10.001. Epub 2014 Nov 14. Surg Oncol. 2015. PMID: 25453577 Review.
Cited by
- Metastasis-associated gene MAPK15 promotes the migration and invasion of osteosarcoma cells via the c-Jun/MMPs pathway.
Su Z, Yang B, Zeng Z, Zhu S, Wang C, Lei S, Jiang Y, Lin L. Su Z, et al. Oncol Lett. 2020 Jul;20(1):99-112. doi: 10.3892/ol.2020.11544. Epub 2020 Apr 15. Oncol Lett. 2020. PMID: 32565938 Free PMC article. - Long non-coding RNA PVT1 encapsulated in bone marrow mesenchymal stem cell-derived exosomes promotes osteosarcoma growth and metastasis by stabilizing ERG and sponging miR-183-5p.
Zhao W, Qin P, Zhang D, Cui X, Gao J, Yu Z, Chai Y, Wang J, Li J. Zhao W, et al. Aging (Albany NY). 2019 Nov 7;11(21):9581-9596. doi: 10.18632/aging.102406. Epub 2019 Nov 7. Aging (Albany NY). 2019. PMID: 31699956 Free PMC article. - Role of autophagy in drug resistance and regulation of osteosarcoma (Review).
Pu Y, Wang J, Wang S. Pu Y, et al. Mol Clin Oncol. 2022 Mar;16(3):72. doi: 10.3892/mco.2022.2505. Epub 2022 Feb 1. Mol Clin Oncol. 2022. PMID: 35251623 Free PMC article. Review. - MicroRNA-208a-3p promotes osteosarcoma progression via targeting PTEN.
Fu Y, Wang Y, Bi K, Yang L, Sun Y, Li B, Liu Z, Zhang F, Li Y, Feng C, Bi Z. Fu Y, et al. Exp Ther Med. 2020 Dec;20(6):255. doi: 10.3892/etm.2020.9385. Epub 2020 Oct 23. Exp Ther Med. 2020. PMID: 33178353 Free PMC article. - RNF219/_α_-Catenin/LGALS3 Axis Promotes Hepatocellular Carcinoma Bone Metastasis and Associated Skeletal Complications.
Zhang S, Xu Y, Xie C, Ren L, Wu G, Yang M, Wu X, Tang M, Hu Y, Li Z, Yu R, Liao X, Mo S, Wu J, Li M, Song E, Qi Y, Song L, Li J. Zhang S, et al. Adv Sci (Weinh). 2020 Dec 31;8(4):2001961. doi: 10.1002/advs.202001961. eCollection 2021 Feb. Adv Sci (Weinh). 2020. PMID: 33643786 Free PMC article.
References
- Bielack S., Kempf-Bielack B., Von Kalle T., Schwarz R., Wirth T., Kager L., Whelan J. Controversies in childhood osteosarcoma. Minerva Pediatr. 2013;65:125–148. - PubMed
- Bielack S.S., Kempf-Bielack B., Delling G., Exner G.U., Flege S., Helmke K., Kotz R., Salzer-Kuntschik M., Werner M., Winkelmann W., et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: An analysis of 1702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 2002;20:776–790. doi: 10.1200/JCO.2002.20.3.776. - DOI - PubMed
- Kager L., Zoubek A., Pötschger U., Kastner U., Flege S., Kempf-Bielack B., Branscheid D., Kotz R., Salzer-Kuntschik M., Winkelmann W., et al. Primary metastatic osteosarcoma: Presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 2003;21:2011–2018. doi: 10.1200/JCO.2003.08.132. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources