Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization - PubMed (original) (raw)
Analyzing bacterial extracellular vesicles in human body fluids by orthogonal biophysical separation and biochemical characterization
Joeri Tulkens et al. Nat Protoc. 2020 Jan.
Abstract
Gram-negative and Gram-positive bacteria release a variety of membrane vesicles through different formation routes. Knowledge of the structure, molecular cargo and function of bacterial extracellular vesicles (BEVs) is primarily obtained from bacteria cultured in laboratory conditions. BEVs in human body fluids have been less thoroughly investigated most probably due to the methodological challenges in separating BEVs from their matrix and host-derived eukaryotic extracellular vesicles (EEVs) such as exosomes and microvesicles. Here, we present a step-by-step procedure to separate and characterize BEVs from human body fluids. BEVs are separated through the orthogonal implementation of ultrafiltration, size-exclusion chromatography (SEC) and density-gradient centrifugation. Size separates BEVs from bacteria, flagella and cell debris in stool; and blood cells, high density lipoproteins (HDLs) and soluble proteins in blood. Density separates BEVs from fibers, protein aggregates and EEVs in stool; and low-density lipoproteins (LDLs), very-low-density lipoproteins (VLDLs), chylomicrons, protein aggregates and EEVs in blood. The procedure is label free, maintains the integrity of BEVs and ensures reproducibility through the use of automated liquid handlers. Post-separation BEVs are characterized using orthogonal biochemical endotoxin and Toll-like receptor-based reporter assays in combination with proteomics, electron microscopy and nanoparticle tracking analysis (NTA) to evaluate BEV quality, abundance, structure and molecular cargo. Separation and characterization of BEVs from body fluids can be done within 72 h, is compatible with EEV analysis and can be readily adopted by researchers experienced in basic molecular biology and extracellular vesicle analysis. We anticipate that this protocol will expand our knowledge on the biological heterogeneity, molecular cargo and function of BEVs in human body fluids and steer the development of laboratory research tools and clinical diagnostic kits.
Similar articles
- Purification of Bacterial-Enriched Extracellular Vesicle Samples from Feces by Density Gradient Ultracentrifugation.
Byts N, Makieieva O, Zhyvolozhnyi A, Bart G, Korvala J, Hekkala J, Salmi S, Samoylenko A, Reunanen J. Byts N, et al. Methods Mol Biol. 2023;2668:211-226. doi: 10.1007/978-1-0716-3203-1_15. Methods Mol Biol. 2023. PMID: 37140799 - Isolation and Purification of Bacterial Extracellular Vesicles from Human Feces Using Density Gradient Centrifugation.
Xue Y, Huang X, Ou Z, Wu Y, Li Q, Huang X, Wen M, Yang Y, Situ B, Zheng L. Xue Y, et al. J Vis Exp. 2023 Sep 1;(199). doi: 10.3791/65574. J Vis Exp. 2023. PMID: 37677032 - Unveiling clinical applications of bacterial extracellular vesicles as natural nanomaterials in disease diagnosis and therapeutics.
Liu C, Yazdani N, Moran CS, Salomon C, Seneviratne CJ, Ivanovski S, Han P. Liu C, et al. Acta Biomater. 2024 May;180:18-45. doi: 10.1016/j.actbio.2024.04.022. Epub 2024 Apr 17. Acta Biomater. 2024. PMID: 38641182 Review. - Multiple Particle Tracking: A Method for Probing Biologically Relevant Mobility of Bacterial Extracellular Vesicles.
Steinman D, Kirian RD, Zierden HC. Steinman D, et al. Methods Mol Biol. 2024;2843:137-152. doi: 10.1007/978-1-0716-4055-5_9. Methods Mol Biol. 2024. PMID: 39141298 - Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects.
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Humaira, et al. J Basic Microbiol. 2024 Oct;64(10):e2400221. doi: 10.1002/jobm.202400221. Epub 2024 Aug 15. J Basic Microbiol. 2024. PMID: 39148315 Review.
Cited by
- Comparison of cell-free and small extracellular-vesicle-associated DNA by sequencing plasma of lung cancer patients.
Moldovan N, Verkuijlen S, van der Pol Y, Bosch L, van Weering JRT, Bahce I, Pegtel DM, Mouliere F. Moldovan N, et al. iScience. 2024 Aug 14;27(9):110742. doi: 10.1016/j.isci.2024.110742. eCollection 2024 Sep 20. iScience. 2024. PMID: 39262778 Free PMC article. - Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application.
Yang Q, Li S, Ou H, Zhang Y, Zhu G, Li S, Lei L. Yang Q, et al. J Nanobiotechnology. 2024 Jan 28;22(1):41. doi: 10.1186/s12951-024-02298-7. J Nanobiotechnology. 2024. PMID: 38281957 Free PMC article. Review. - Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis.
Cheung KCP, Jiao M, Xingxuan C, Wei J. Cheung KCP, et al. Front Pharmacol. 2023 Jan 6;13:1051134. doi: 10.3389/fphar.2022.1051134. eCollection 2022. Front Pharmacol. 2023. PMID: 36686680 Free PMC article. Review. - Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer.
Zhang Z, Liu X, Yang X, Jiang Y, Li A, Cong J, Li Y, Xie Q, Xu C, Liu D. Zhang Z, et al. J Extracell Vesicles. 2023 Jan;12(1):e12300. doi: 10.1002/jev2.12300. J Extracell Vesicles. 2023. PMID: 36604402 Free PMC article. - Purification of Bacterial-Enriched Extracellular Vesicle Samples from Feces by Density Gradient Ultracentrifugation.
Byts N, Makieieva O, Zhyvolozhnyi A, Bart G, Korvala J, Hekkala J, Salmi S, Samoylenko A, Reunanen J. Byts N, et al. Methods Mol Biol. 2023;2668:211-226. doi: 10.1007/978-1-0716-3203-1_15. Methods Mol Biol. 2023. PMID: 37140799
References
- Zitvogel, L., Ma, Y., Raoult, D., Kroemer, G. & Gajewski, T. F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science 359, 1366–1370 (2018).
- Brenchley, J. M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006). - PubMed
- Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and anti-cancer immunity. Nature 565, 600–605 (2019).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources