Effect of Cordyceps militaris Hot Water Extract on Immunomodulation-associated Gene Expression in Broilers, Gallus gallus - PubMed (original) (raw)

Effect of Cordyceps militaris Hot Water Extract on Immunomodulation-associated Gene Expression in Broilers, Gallus gallus

Yeong-Hsiang Cheng et al. J Poult Sci. 2019.

Abstract

Cordyceps militaris is a well-known Chinese medicinal fungus that has been used as a nutraceutical food in several Asian countries. Cordycepin (3'-deoxyadenosine), a secondary metabolite produced from Cordyceps militaris, has been demonstrated to exert a wide spectrum of pharmacological activities, such as anti-microbial and antitumor activities. However, the effect of cordycepin on immunomodulation in broilers is poorly investigated. In the current study, we investigated the effect of cordycepin (9.69, 19.38, and 38.76 mg) from Cordyceps militaris hot water extract (CMHW) on growth performance and immunocompetence in broilers. Results showed that CMHW significantly decreased inducible nitric oxide synthase (iNOS) mRNA levels in the bursa of Fabricius after 4 weeks of feeding (P<0.05). CMHW treatment reduced cyclooxygenase-2 (COX-2) mRNA levels in the spleen and bursa of Fabricius after 4 weeks of feeding (P<0.05). Supplementation of CMHW for 3 days after vaccination reduced iNOS mRNA level in the spleen of 14 and 28 day-old broilers (P<0.05). Prior to vaccination, CMHW pretreatment significantly down-regulated COX-2 mRNA levels in the spleen and bursa of Fabricius of 14-day-old broilers (P<0.05). Furthermore, CMHW significantly reduced lipopolysaccharide (LPS)-induced iNOS and COX-2 mRNA levels in the spleen and bursa of Fabricius (P<0.05). CMHW treatment attenuated LPS-induced IFN-γ expression in the spleen and bursa of Fabricius, whereas CMHW induced IL-4 expression in these organs in response to LPS challenge (P<0.05). Taken together, these observations demonstrate that CMHW exerts an immunomodulatory role in broilers. CMHW is a potential novel feed additive with applications in inflammation-related diseases and bacterial infection in broilers.

Keywords: Cordyceps militaris; broiler; immunomodulation; lipopolysaccharide.

2019, Japan Poultry Science Association.

PubMed Disclaimer

Figures

Fig. 1.

Fig. 1.

Effects of CMHW supplementation on antibody titer in broilers. (a) Effect of different concentrations of CMHW (1, 2, and 4 g/L in drinking water) on antibody titers against Newcastle disease (ND) in 14-day-old broilers. (b) Effect of different concentrations of CMHW (1, 2, and 4 g/L in drinking water) on antibody titers against infectious bronchitis (IB) in 14-day-old broilers. (c) Effect of different supplementation period (A, anterior only; AP: anterior and posterior; P, posterior only) of CMHW (2 g/L in drinking water) on antibody titers against ND in 35-day-old broilers. (d) Effect of different supplementation period (A, anterior only; AP: anterior and posterior; P, posterior only) of CMHW (2 g/L in drinking water) on antibody titers against IB in 35-day-old broilers. Values represent mean±SD (_n_=3).

Fig. 2.

Fig. 2.

Effects of different concentrations of CMHW on inflammation-related gene expression in broilers. Effect of different concentrations of CMHW (1, 2, and 4 g/L in drinking water) on iNOS mRNA level in the spleen of 14-day-old (a) and 28-day-old broilers (b). COX-2 mRNA level in the spleen of 14-day-old (c) and 28-day-old broilers (d). Effect of different concentrations of CMHW (1, 2, and 4 g/L in drinking water) on iNOS mRNA level in the bursa of Fabricius of 14-day-old (e) and 28-day-old broilers (f). COX-2 mRNA level in the bursa of Fabricius of 14-day-old (g) and 28-day-old broilers (h). Values represent mean±SD (_n_=6). Means with different letter superscripts are significantly different (P<0.05)

Fig. 3.

Fig. 3.

Effects of CMHW supplementation on inflammation-associated gene expression in broilers during vaccination. Effect of different supplementation period (A, anterior only; AP, anterior and posterior; P, posterior only) of CMHW (2 g/L in drinking water) on iNOS mRNA level in the spleen of 21-day-old (a) and 35-day-old broilers (b). COX-2 mRNA level in the spleen of 21-day-old (c) and 35-day-old broilers (d). Effect of different supplementation period (A, anterior only; AP, anterior and posterior; P, posterior only) of CMHW (2 g/L in drinking water) on iNOS mRNA expression in the bursa of Fabricius of 21-day-old (e) and 35-day-old broilers (f). COX-2 mRNA level in the bursa of Fabricius of 21-day-old (g) and 35-day-old broilers (h). Values represent mean±SD (_n_=6). Means with different letter superscripts are significantly different (P<0.05)

Fig. 4.

Fig. 4.

Effects of CMHW supplementation on inflammation-related gene expression in LPS-challenged broilers. Effect of CMHW supplementation on iNOS mRNA level in the spleen of broilers 3 h (a) and 24 h (b) post-injection of LPS. COX-2 mRNA level in the spleen of broilers 3 h (c) and 24 h (d) post-injection of LPS. Effect of CMHW supplementation on iNOS mRNA expression in the bursa of Fabricius of broilers 3 h (e) and 24 h (f) post-injection of LPS. COX-2 mRNA level in the bursa of Fabricius of broilers 3 h (g) and 24 h (h) post-injection of LPS. Values are expressed as mean±SD (_n_=6). Means with different letter superscripts are significantly different (P<0.05)

Fig. 5.

Fig. 5.

Effects of CMHW supplementation on type 1 helper T-lymphocytes (Th1) /type 2 helper T-lymphocytes (Th2) cytokine expression in LPS-challenged broilers. Effect of CMHW supplementation on IFN-γ mRNA level in the spleen of broilers 3 h (a) and 24 h (b) post-injection of LPS, and IL-4 mRNA level in the spleen of broilers 3 h (c) and 24 h (d) post-injection of LPS. Effect of CMHW supplementation on IFN-γ mRNA level in the bursa of Fabricius of broilers 3 h (e) and 24 h (f) post-injection of LPS. IL-4 mRNA level in the bursa of Fabricius of broilers 3 h (g) and 24 h (h) post-injection of LPS. Values represent mean±SD (_n_=6). Means with different letter superscripts are significantly different (P<0.05).

Similar articles

Cited by

References

    1. Abudabos AM, Al-Batshan HA, Murshed MA. Effects of prebiotics and probiotics on the performance and bacterial colonization of broiler chickens. South African Journal of Animal Science, 45: 419-428. 2015. a.
    1. Abudabos AM, Alyemni AH, Dafalla YM, Khan RU. The effect of phytogenic feed additives to substitute in-feed antibiotics on growth traits and blood biochemical parameters in broiler chicks challenged with Salmonella typhimurium. Environmental Science and Pollution Research, 23: 24151-24157. 2015. b. - PubMed
    1. Ahn YJ, Park SJ, Lee SG, Shin SC, Choi DH. Cordycepin: selective growth inhibitor derived from liquid culture of Cordyceps militaris against Clostridium spp. Journal of Agricultural and Food Chemistry, 48: 2744-2748. 2000. - PubMed
    1. Cheng YH, Wen CM, Dybus A, Proskura WS. Fermentation products of Cordyceps militaris enhance performance and modulate immune response of weaned piglets. South African Journal of Animal Science, 46: 121-128. 2016.
    1. Choi YH, Kim GY, Lee HH. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Design, Development and Therapy, 16: 1941-1953. 2014. - PMC - PubMed

LinkOut - more resources