Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon - PubMed (original) (raw)
. 2020 Dec;26(12):7006-7020.
doi: 10.1111/gcb.15352. Epub 2020 Oct 11.
Affiliations
- PMID: 32969561
- DOI: 10.1111/gcb.15352
Secondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon
Charlotte C Smith et al. Glob Chang Biol. 2020 Dec.
Abstract
Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by secondary forest growth. Using MapBiomas 3.1 and recently refined IPCC carbon sequestration estimates, we mapped the age and extent of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-growth deforestation emissions since 1985. We also assessed whether secondary forests in the Brazilian Amazon are growing in conditions favourable for carbon accumulation in relation to a suite of climatic, landscape and local factors. In 2017, the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33 ± 0.05 billion Mg of above-ground carbon but had offset just 9.37% of old-growth emissions since 1985. However, we find that the majority of Brazilian secondary forests are situated in contexts that are less favourable for carbon accumulation than the biome average. Our results demonstrate that old-growth forest loss remains the most important factor determining the carbon balance in the Brazilian Amazon. Understanding the implications of these findings will be essential for improving estimates of secondary forest carbon sequestration potential. More accurate quantification of secondary forest carbon stocks will support the production of appropriate management proposals that can efficiently harness the potential of secondary forests as a low-cost, nature-based tool for mitigating climate change.
Keywords: carbon sequestration; climate change; forest regeneration; human-modified landscapes; negative emissions; secondary vegetation; tropical forests.
© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
Similar articles
- Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.
Aguiar AP, Vieira IC, Assis TO, Dalla-Nora EL, Toledo PM, Santos-Junior RA, Batistella M, Coelho AS, Savaget EK, Aragão LE, Nobre CA, Ometto JP. Aguiar AP, et al. Glob Chang Biol. 2016 May;22(5):1821-40. doi: 10.1111/gcb.13134. Epub 2016 Feb 9. Glob Chang Biol. 2016. PMID: 26511401 - Environmental change and the carbon balance of Amazonian forests.
Aragão LE, Poulter B, Barlow JB, Anderson LO, Malhi Y, Saatchi S, Phillips OL, Gloor E. Aragão LE, et al. Biol Rev Camb Philos Soc. 2014 Nov;89(4):913-31. doi: 10.1111/brv.12088. Epub 2014 Feb 20. Biol Rev Camb Philos Soc. 2014. PMID: 25324039 Review. - A large-scale field assessment of carbon stocks in human-modified tropical forests.
Berenguer E, Ferreira J, Gardner TA, Aragão LE, De Camargo PB, Cerri CE, Durigan M, Cosme De Oliveira Junior R, Vieira IC, Barlow J. Berenguer E, et al. Glob Chang Biol. 2014 Dec;20(12):3713-26. doi: 10.1111/gcb.12627. Epub 2014 May 28. Glob Chang Biol. 2014. PMID: 24865818 - Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.
Nogueira EM, Yanai AM, Fonseca FO, Fearnside PM. Nogueira EM, et al. Glob Chang Biol. 2015 Mar;21(3):1271-92. doi: 10.1111/gcb.12798. Epub 2015 Jan 8. Glob Chang Biol. 2015. PMID: 25380507 - Beyond diversity loss and climate change: Impacts of Amazon deforestation on infectious diseases and public health.
Ellwanger JH, Kulmann-Leal B, Kaminski VL, Valverde-Villegas JM, Veiga ABGD, Spilki FR, Fearnside PM, Caesar L, Giatti LL, Wallau GL, Almeida SEM, Borba MR, Hora VPD, Chies JAB. Ellwanger JH, et al. An Acad Bras Cienc. 2020 Apr 17;92(1):e20191375. doi: 10.1590/0001-3765202020191375. eCollection 2020. An Acad Bras Cienc. 2020. PMID: 32321030 Review.
Cited by
- Linking land-use and land-cover transitions to their ecological impact in the Amazon.
Nunes CA, Berenguer E, França F, Ferreira J, Lees AC, Louzada J, Sayer EJ, Solar R, Smith CC, Aragão LEOC, Braga DL, de Camargo PB, Cerri CEP, de Oliveira RC Jr, Durigan M, Moura N, Oliveira VHF, Ribas C, Vaz-de-Mello F, Vieira I, Zanetti R, Barlow J. Nunes CA, et al. Proc Natl Acad Sci U S A. 2022 Jul 5;119(27):e2202310119. doi: 10.1073/pnas.2202310119. Epub 2022 Jun 27. Proc Natl Acad Sci U S A. 2022. PMID: 35759674 Free PMC article. - Rural land abandonment is too ephemeral to provide major benefits for biodiversity and climate.
Crawford CL, Yin H, Radeloff VC, Wilcove DS. Crawford CL, et al. Sci Adv. 2022 May 27;8(21):eabm8999. doi: 10.1126/sciadv.abm8999. Epub 2022 May 25. Sci Adv. 2022. PMID: 35613262 Free PMC article.
References
REFERENCES
- Achard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.-P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999-1002. https://doi.org/10.1126/science.1070656
- Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262-271. https://doi.org/10.1111/j.1744-7429.2012.00908.x
- Almeida, D. R. A., Stark, S. C., Chazdon, R., Nelson, B. W., Cesar, R. G., Meli, P., Gorgens, E. B., Duarte, M. M., Valbuena, R., Moreno, V. S., Mendes, A. F., Amazonas, N., Gonçalves, N. B., Silva, C. A., Schietti, J., & Brancalion, P. H. S. (2019). The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 438, 34-43. https://doi.org/10.1016/j.foreco.2019.02.002
- Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., … Willcock, S. (2016). An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22(4), 1406-1420. https://doi.org/10.1111/gcb.13139
- Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182-185. https://doi.org/10.1038/nclimate1354
MeSH terms
Substances
LinkOut - more resources
Full Text Sources