Plague reservoir species throughout the world - PubMed (original) (raw)
. 2021 Nov;16(6):820-833.
doi: 10.1111/1749-4877.12511. Epub 2020 Dec 24.
Affiliations
- PMID: 33264458
- DOI: 10.1111/1749-4877.12511
Plague reservoir species throughout the world
Ahmad Mahmoudi et al. Integr Zool. 2021 Nov.
Abstract
Plague has been known since ancient times as a re-emerging infectious disease, causing considerable socioeconomic burden in regional hotspots. To better understand the epidemiological cycle of the causative agent of the plague, its potential occurrence, and possible future dispersion, one must carefully consider the taxonomy, distribution, and ecological requirements of reservoir-species in relation either to natural or human-driven changes (e.g. climate change or urbanization). In recent years, the depth of knowledge on species taxonomy and species composition in different landscapes has undergone a dramatic expansion, driven by modern taxonomic methods such as synthetic surveys that take into consideration morphology, genetics, and the ecological setting of captured animals to establish their species identities. Here, we consider the recent taxonomic changes of the rodent species in known plague reservoirs and detail their distribution across the world, with a particular focus on those rodents considered to be keystone host species. A complete checklist of all known plague-infectable vertebrates living in plague foci is provided as a Supporting Information table.
Keywords: mammals; plague; reservoirs; rodents; taxonomy.
© 2020 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Similar articles
- A Taxonomic Update of Small Mammal Plague Reservoirs in South America.
Bonvicino CR, Oliveira JA, Cordeiro-Estrela P, D'andrea PS, Almeida AM. Bonvicino CR, et al. Vector Borne Zoonotic Dis. 2015 Oct;15(10):571-9. doi: 10.1089/vbz.2015.1788. Epub 2015 Sep 22. Vector Borne Zoonotic Dis. 2015. PMID: 26393822 Review. - [Eco-geographic landscapes of natural plague foci in China v. biological characteristics of major natural reservoirs of Yesinia pestis].
Qin CY, Xu L, Zhang RZ, Liu QY, Li GC, Fang XY. Qin CY, et al. Zhonghua Liu Xing Bing Xue Za Zhi. 2012 Jul;33(7):692-7. Zhonghua Liu Xing Bing Xue Za Zhi. 2012. PMID: 22968018 Chinese. - [Ecological-geographic landscapes of natural plague foci in China VII. Typing of natural plague foci].
Fang XY, Yang RF, Xu L, Liu QY, Dong XQ, Zhang RZ, Yu X, Qin CY, Gong ZD, Zhou DS, Cui YJ, Li YJ, Ye RY, Lu L, Zhang JT, Li GC. Fang XY, et al. Zhonghua Liu Xing Bing Xue Za Zhi. 2012 Nov;33(11):1144-50. Zhonghua Liu Xing Bing Xue Za Zhi. 2012. PMID: 23290901 Chinese. - Exposure of small rodents to plague during epizootics in black-tailed prairie dogs.
Stapp P, Salkeld DJ, Eisen RJ, Pappert R, Young J, Carter LG, Gage KL, Tripp DW, Antolin MF. Stapp P, et al. J Wildl Dis. 2008 Jul;44(3):724-30. doi: 10.7589/0090-3558-44.3.724. J Wildl Dis. 2008. PMID: 18689662 - [Ecological interactions among Yersinia in their common reservoir, the rodent].
Alonso JM. Alonso JM. Bull Soc Pathol Exot. 1999 Dec;92(5 Pt 2):414-7. Bull Soc Pathol Exot. 1999. PMID: 11000952 Review. French.
Cited by
- Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania.
Haikukutu L, Lyaku JR, Lyimo CM, Eiseb SJ, Makundi RH, Olayemi A, Wilhelm K, Müller-Klein N, Schmid DW, Fleischer R, Sommer S. Haikukutu L, et al. Immunogenetics. 2023 Dec;75(6):517-530. doi: 10.1007/s00251-023-01323-7. Epub 2023 Oct 19. Immunogenetics. 2023. PMID: 37853246 Free PMC article. - The Natural and Clinical History of Plague: From the Ancient Pandemics to Modern Insights.
Bennasar-Figueras A. Bennasar-Figueras A. Microorganisms. 2024 Jan 11;12(1):146. doi: 10.3390/microorganisms12010146. Microorganisms. 2024. PMID: 38257973 Free PMC article. Review. - Transovarial transmission of Yersinia pestis in its flea vector Xenopsylla cheopis.
Pauling CD, Beerntsen BT, Song Q, Anderson DM. Pauling CD, et al. Nat Commun. 2024 Aug 23;15(1):7266. doi: 10.1038/s41467-024-51668-0. Nat Commun. 2024. PMID: 39179552 Free PMC article. - Plague risk in the western United States over seven decades of environmental change.
Carlson CJ, Bevins SN, Schmid BV. Carlson CJ, et al. Glob Chang Biol. 2022 Feb;28(3):753-769. doi: 10.1111/gcb.15966. Epub 2021 Nov 18. Glob Chang Biol. 2022. PMID: 34796590 Free PMC article. - Assembling a safe and effective toolbox for integrated flea control and plague mitigation: Fipronil experiments with prairie dogs.
Eads D, Livieri T, Tretten T, Hughes J, Kaczor N, Halsell E, Grassel S, Dobesh P, Childers E, Lucas D, Noble L, Vasquez M, Grady AC, Biggins D. Eads D, et al. PLoS One. 2022 Aug 8;17(8):e0272419. doi: 10.1371/journal.pone.0272419. eCollection 2022. PLoS One. 2022. PMID: 35939486 Free PMC article.
References
REFERENCES
- Andrianaivoarimanana V, Rajerison M, Jambou R (2018). Exposure to Yersinia pestis increases resistance to plague in black rats and modulates transmission in Madagascar. BMC Research Notes 11, 898.
- Ayyadurai S, Houhamdi L, Lepidi H, Nappez C, Raoult D, Drancourt M (2008). Long-term persistence of virulent Yersinia pestis in soil. Microbiology 154, 2865-71.
- Baltazard M, Bahmanyar M, Mofidi C, Seydian B (1952). Le foyer de peste du Kurdistan. Bulletin of the World Health Organization 5, 441.
- Baltazard M, Bahmanyar M, Mostachfi P, Eftekhari M, Mofidi C (1960). Recherches sur la peste en Iran. Bulletin of the World Health Organization 23, 141.
- Bannikova A, Lebedev V, Dubrovskaya A et al. (2019). Genetic evidence for several cryptic species within the Scarturus elater species complex (Rodentia: Dipodoidea): When cryptic species are really cryptic. Biological Journal of the Linnean Society 126, 16-39.
MeSH terms
LinkOut - more resources
Full Text Sources
Medical