Emerging Role of MiR-192-5p in Human Diseases - PubMed (original) (raw)

Review

Emerging Role of MiR-192-5p in Human Diseases

Fu-Jia Ren et al. Front Pharmacol. 2021.

Abstract

MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.

Keywords: Cancers; digestive system; human diseases; miR-192-5p; respiratory system.

Copyright © 2021 Ren, Yao, Cai and Fang.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

FIGURE 1

FIGURE 1

The biogenesis and regulation of miR-192-5p. Pre-miR-192 could produce two mature miRNA transcripts, miR-192-5p and miR-192-3p, each of which can regulate gene expression by targeting 3′-UTR of mRNA, such as XIAP, TRIM44, SEMA3A, FABP3, and YY1 for miR-192-5p, and ALDH3A2, SCD and LXR for miR-192-3p. In cell nucleus, KHSRP can promote maturation of pri-miR-192, thereby facilitating the production of miR-192-5p. In cytoplasm, P53 and noncoding RNAs, such as circHIPK3, lnc KCNQ1OT1 and lnc FTX, can inhibit the expression of miR-192-5p.

FIGURE 2

FIGURE 2

The expression and regulatory mechanism of miR-192-5p in respiratory system. MiR-192-5p is reduced in serum of human asthma, NPC and lung cancer, as well as NPC tissues and lung cancer cell, which can influence diseases progression by targeting CXCR5, XIAP, TRIM44, and PI3K-AKT. Curcumin can promote the expression of miR-192-5p.

FIGURE 3

FIGURE 3

The expression and regulatory mechanism of miR-192-5p in digestive system. In different digestive system diseases, the expression of miR-192-5p is flexible. In various liver diseases, miR-192-5p exhibits different expression levels and exerts versatile function. The asterisk (*) represents the controversial role of miR-192-5p.

FIGURE 4

FIGURE 4

The expression and regulatory mechanism of miR-192-5p in different liver diseases. In NAFLD, miR-192-5p is increased in serum exosome, and exosomal miR-192-5p derived from hepatocytes promote the polarization of inflammatory macrophage. In HBV hepatitis, drug or I/R induced liver jury, circulating miR-192-5p is increased, which can target different molecules. In HCC, the expression of miR-192-5p is controversial. Full line represents what actually happens, dotted line represents what might happen. The asterisk (*) represents the controversial role of miR-192-5p.

Similar articles

Cited by

References

    1. Argyropoulos C., Wang K., Bernardo J., Ellis D., Orchard T., Galas D., et al. (2015). Urinary MicroRNA profiling predicts the development of microalbuminuria in patients with type 1 diabetes. J. Clin. Med. 4, 1498–1517. 10.3390/jcm4071498 - DOI - PMC - PubMed
    1. Baker M. A., Wang F., Liu Y., Kriegel A. J., Geurts A. M., Usa K., et al. (2019). MiR-192-5p in the kidney protects against the development of hypertension. Hypertension 73, 399–406. 10.1161/HYPERTENSIONAHA.118.11875 - DOI - PMC - PubMed
    1. Bansal A., Hong X., Lee I. H., Krishnadath K. K., Mathur S. C., Gunewardena S., et al. (2014). MicroRNA expression can be a promising strategy for the detection of Barrett’s esophagus: a pilot study. Clin. Transl. Gastroenterol. 5, e65. 10.1038/ctg.2014.17 - DOI - PMC - PubMed
    1. Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. 10.1016/s0092-8674(04)00045-5 - DOI - PubMed
    1. Biazzo A., De Paolis M. (2016). Multidisciplinary approach to osteosarcoma. Acta Orthop. Belg. 82, 690–698. - PubMed

Publication types

LinkOut - more resources