An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain - PubMed (original) (raw)
An antibody- and synthetic peptide-defined rubella virus E1 glycoprotein neutralization domain
J S Wolinsky et al. J Virol. 1993 Feb.
Abstract
We previously described a monoclonal antibody (MAb) library generated by infecting BALB/c mice with rubella virus (RV) and selected by an enzyme-linked immunosorbent assay (ELISA) using purified virion targets. Plasmid pARV02-01, which expresses the fusion protein RecA1-35-GIGDLGSP-E1(202)-E1(283)-GDP-LacZ9-1015 in Escherichia coli, was shown to be a ligand for MAbs E1-18 and E1-20 (J. S. Wolinsky, M. McCarthy, O. Allen-Cannady, W. T. Moore, R. Jin, S. N. Cao, A. Lovett, and D. Simmons, J. Virol. 65:3986-3994, 1991). Both of these MAbs neutralize RV infectivity. A series of five overlapping synthetic peptides was made to further explore the requirements of this MAb binding domain. One of these peptides (SP15; E1(208) to E1(239)) proved an effective ligand for both MAbs in the ELISA. Stepwise synthesis of SP15 defined the minimal amino-terminal requirement for binding MAb E1-18 as E1(221) and that of MAb E1-20 as E1(223); the minimal carboxyl-terminal requirement is uncertain but does not exceed E1(239). Immunization of mice and rabbits with SP15 induced polyvalent antibody reactive with SP15, with other overlapped and related but not unrelated synthetic peptides, and with RV. The rabbit anti-SP15 antibody showed neutralization activity to RV similar to that of MAbs E1-18 and E1-20 but lacked hemagglutination inhibition activity. These data define a neutralization domain on E1 and suggest that the RV epitopes conserved by SP15 may be critical for protective host humoral immune responses.
Similar articles
- Monoclonal antibody-defined epitope map of expressed rubella virus protein domains.
Wolinsky JS, McCarthy M, Allen-Cannady O, Moore WT, Jin R, Cao SN, Lovett A, Simmons D. Wolinsky JS, et al. J Virol. 1991 Aug;65(8):3986-94. doi: 10.1128/JVI.65.8.3986-3994.1991. J Virol. 1991. PMID: 1712855 Free PMC article. - Presence of a neutralizing domain in isolates of rubella virus in Cordoba, Argentina.
Cordoba P, Grutadauria SL, Cuffini C, Zapata MT. Cordoba P, et al. Clin Diagn Lab Immunol. 1997 Jul;4(4):493-5. doi: 10.1128/cdli.4.4.493-495.1997. Clin Diagn Lab Immunol. 1997. PMID: 9220172 Free PMC article. - Immunodominant T-cell epitopes of rubella virus structural proteins defined by synthetic peptides.
McCarthy M, Lovett A, Kerman RH, Overstreet A, Wolinsky JS. McCarthy M, et al. J Virol. 1993 Feb;67(2):673-81. doi: 10.1128/JVI.67.2.673-681.1993. J Virol. 1993. PMID: 7678302 Free PMC article. - Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica.
Roehrig JT, Bolin RA, Kelly RG. Roehrig JT, et al. Virology. 1998 Jul 5;246(2):317-28. doi: 10.1006/viro.1998.9200. Virology. 1998. PMID: 9657950 - Characterization of rubella virus-specific antibody responses by using a new synthetic peptide-based enzyme-linked immunosorbent assay.
Mitchell LA, Zhang T, Ho M, Décarie D, Tingle AJ, Zrein M, Lacroix M. Mitchell LA, et al. J Clin Microbiol. 1992 Jul;30(7):1841-7. doi: 10.1128/jcm.30.7.1841-1847.1992. J Clin Microbiol. 1992. PMID: 1629342 Free PMC article.
Cited by
- A single-point mutation in the rubella virus E1 glycoprotein promotes rescue of recombinant vesicular stomatitis virus.
Das PK, Gonzalez PA, Jangra RK, Yin P, Kielian M. Das PK, et al. mBio. 2024 Mar 13;15(3):e0237323. doi: 10.1128/mbio.02373-23. Epub 2024 Feb 9. mBio. 2024. PMID: 38334805 Free PMC article. - Molecular and Structural Insights into the Life Cycle of Rubella Virus.
Das PK, Kielian M. Das PK, et al. J Virol. 2021 Apr 26;95(10):e02349-20. doi: 10.1128/JVI.02349-20. Epub 2021 Feb 24. J Virol. 2021. PMID: 33627388 Free PMC article. Review. - Relatives of rubella virus in diverse mammals.
Bennett AJ, Paskey AC, Ebinger A, Pfaff F, Priemer G, Höper D, Breithaupt A, Heuser E, Ulrich RG, Kuhn JH, Bishop-Lilly KA, Beer M, Goldberg TL. Bennett AJ, et al. Nature. 2020 Oct;586(7829):424-428. doi: 10.1038/s41586-020-2812-9. Epub 2020 Oct 7. Nature. 2020. PMID: 33029010 Free PMC article. - Preliminary multiplex microarray IgG immunoassay for the diagnosis of toxoplasmosis and rubella.
Baschirotto PT, Krieger MA, Foti L. Baschirotto PT, et al. Mem Inst Oswaldo Cruz. 2017 Jun;112(6):428-436. doi: 10.1590/0074-02760160509. Mem Inst Oswaldo Cruz. 2017. PMID: 28591403 Free PMC article. - Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus.
Mangala Prasad V, Klose T, Rossmann MG. Mangala Prasad V, et al. PLoS Pathog. 2017 Jun 2;13(6):e1006377. doi: 10.1371/journal.ppat.1006377. eCollection 2017 Jun. PLoS Pathog. 2017. PMID: 28575072 Free PMC article.
References
- J Gen Virol. 1987 Sep;68 ( Pt 9):2347-57 - PubMed
- Nature. 1987 Oct 22-28;329(6141):736-8 - PubMed
- Arch Virol. 1988;98(3-4):189-97 - PubMed
- Virology. 1989 Jul;171(1):49-60 - PubMed
- Science. 1989 Aug 11;245(4918):616-21 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases