(original) (raw)
%!PS-Adobe-2.0 %%Creator: dvips 5.519 Copyright 1986, 1993 Radical Eye Software %%Title: revised.dvi %%CreationDate: Thu Apr 2 16:03:55 1998 %%Pages: 23 %%PageOrder: Ascend %%BoundingBox: 0 0 612 792 %%EndComments %DVIPSCommandLine: dvips revised %DVIPSSource: TeX output 1998.04.02:1603 %%BeginProcSet: tex.pro /TeXDict 250 dict def TeXDict begin /N{def}def /B{bind def}N /S{exch}N /X{S N}B /TR{translate}N /isls false N /vsize 11 72 mul N /hsize 8.5 72 mul N /landplus90{false}def /@rigin{isls{[0 landplus90{1 -1}{-1 1} ifelse 0 0 0]concat}if 72 Resolution div 72 VResolution div neg scale isls{landplus90{VResolution 72 div vsize mul 0 exch}{Resolution -72 div hsize mul 0}ifelse TR}if Resolution VResolution vsize -72 div 1 add mul TR matrix currentmatrix dup dup 4 get round 4 exch put dup dup 5 get round 5 exch put setmatrix}N /@landscape{/isls true N}B /@manualfeed{ statusdict /manualfeed true put}B /@copies{/#copies X}B /FMat[1 0 0 -1 0 0]N /FBB[0 0 0 0]N /nn 0 N /IE 0 N /ctr 0 N /df-tail{/nn 8 dict N nn begin /FontType 3 N /FontMatrix fntrx N /FontBBox FBB N string /base X array /BitMaps X /BuildChar{CharBuilder}N /Encoding IE N end dup{/foo setfont}2 array copy cvx N load 0 nn put /ctr 0 N[}B /df{/sf 1 N /fntrx FMat N df-tail}B /dfs{div /sf X /fntrx[sf 0 0 sf neg 0 0]N df-tail}B /E{ pop nn dup definefont setfont}B /ch-width{ch-data dup length 5 sub get} B /ch-height{ch-data dup length 4 sub get}B /ch-xoff{128 ch-data dup length 3 sub get sub}B /ch-yoff{ch-data dup length 2 sub get 127 sub}B /ch-dx{ch-data dup length 1 sub get}B /ch-image{ch-data dup type /stringtype ne{ctr get /ctr ctr 1 add N}if}B /id 0 N /rw 0 N /rc 0 N /gp 0 N /cp 0 N /G 0 N /sf 0 N /CharBuilder{save 3 1 roll S dup /base get 2 index get S /BitMaps get S get /ch-data X pop /ctr 0 N ch-dx 0 ch-xoff ch-yoff ch-height sub ch-xoff ch-width add ch-yoff setcachedevice ch-width ch-height true[1 0 0 -1 -.1 ch-xoff sub ch-yoff .1 add]{ ch-image}imagemask restore}B /D{/cc X dup type /stringtype ne{]}if nn /base get cc ctr put nn /BitMaps get S ctr S sf 1 ne{dup dup length 1 sub dup 2 index S get sf div put}if put /ctr ctr 1 add N}B /I{cc 1 add D }B /bop{userdict /bop-hook known{bop-hook}if /SI save N @rigin 0 0 moveto /V matrix currentmatrix dup 1 get dup mul exch 0 get dup mul add .99 lt{/QV}{/RV}ifelse load def pop pop}N /eop{SI restore showpage userdict /eop-hook known{eop-hook}if}N /@start{userdict /start-hook known{start-hook}if pop /VResolution X /Resolution X 1000 div /DVImag X /IE 256 array N 0 1 255{IE S 1 string dup 0 3 index put cvn put}for 65781.76 div /vsize X 65781.76 div /hsize X}N /p{show}N /RMat[1 0 0 -1 0 0]N /BDot 260 string N /rulex 0 N /ruley 0 N /v{/ruley X /rulex X V}B /V {}B /RV statusdict begin /product where{pop product dup length 7 ge{0 7 getinterval dup(Display)eq exch 0 4 getinterval(NeXT)eq or}{pop false} ifelse}{false}ifelse end{{gsave TR -.1 -.1 TR 1 1 scale rulex ruley false RMat{BDot}imagemask grestore}}{{gsave TR -.1 -.1 TR rulex ruley scale 1 1 false RMat{BDot}imagemask grestore}}ifelse B /QV{gsave transform round exch round exch itransform moveto rulex 0 rlineto 0 ruley neg rlineto rulex neg 0 rlineto fill grestore}B /a{moveto}B /delta 0 N /tail{dup /delta X 0 rmoveto}B /M{S p delta add tail}B /b{S p tail} B /c{-4 M}B /d{-3 M}B /e{-2 M}B /f{-1 M}B /g{0 M}B /h{1 M}B /i{2 M}B /j{ 3 M}B /k{4 M}B /w{0 rmoveto}B /l{p -4 w}B /m{p -3 w}B /n{p -2 w}B /o{p -1 w}B /q{p 1 w}B /r{p 2 w}B /s{p 3 w}B /t{p 4 w}B /x{0 S rmoveto}B /y{ 3 2 roll p a}B /bos{/SS save N}B /eos{SS restore}B end %%EndProcSet TeXDict begin 40258431 52099146 1000 300 300 (/tmp_mnt/home/diskin/feige/SC/revised.dvi) @start /Fa 1 108 df<003C000007FC000007FC0000007C0000007800000078000000780000007800 0000F0000000F0000000F0000000F0000001E0000001E0000001E0000001E0000003C00F 8003C0304003C041C003C083C0078107C0078207C007840380078800000F1000000F2000 000FC000000FE000001E7C00001E0F00001E0780001E03C0003C03C0003C03C0803C03C0 803C03C08078038100780381007803820078018200F001C400600078001A2A7DA91F> 107 D E /Fb 4 89 df<00200040008001000300060006000C000C001800180038003000 30007000700070006000E000E000E000E000E000E000E000E000E000E000E000E000E000 6000700070007000300030003800180018000C000C000600060003000100008000400020 0B317A8113>0 D<800040002000100018000C000C000600060003000300038001800180 01C001C001C000C000E000E000E000E000E000E000E000E000E000E000E000E000E000C0 01C001C001C001800180038003000300060006000C000C00180010002000400080000B31 7F8113>I80 D88 D E /Fc 2 51 df<0C003C00CC000C000C000C000C000C000C000C000C000C000C000C000C00FF80 09107E8F0F>49 D<1F00618040C08060C0600060006000C00180030006000C0010202020 7FC0FFC00B107F8F0F>I E /Fd 1 108 df<00F0000FE00000E00000E00000E00001C000 01C00001C00001C0000380000380000380000380000700000700F00703080704380E0878 0E10780E20300E40001C80001F00001FC0001C7000383800383800381C00381C10703820 703820703820701840E00C8060070015237DA219>107 D E /Fe 1 51 df50 D E /Ff 5 108 df<71F09A189C18981818183030303030303030606060600060 006000C000C000C00D107E8A10>17 D<00C000C001C00180018003800300030007000600 06000E000C001C0018001800380030003000700060006000E000C000C0000A197D9210> 61 D<040C0000000000705898983030606464683006127E910B>105 D<0020002000000000000000000000038004C008C008C000C00180018001800180030003 00030003004600CC0078000B1780910D>I<3C000C000C00180018001800187031903230 340038007F00618061906190C1A0C0C00C117E9010>I E /Fg 44 122 df<000FE000007FF80000F81C0001E07C0003E07C0007C07C0007C07C0007C03800 07C0000007C0000007C0000007C1FE00FFFFFE00FFFFFE0007C03E0007C03E0007C03E00 07C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E0007C03E00 07C03E0007C03E0007C03E0007C03E003FF9FFC03FF9FFC01A20809F1D>12 D45 D<01FC0007FF001F07C01E03C03E03E07C01F07C 01F07C01F0FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC01F8FC 01F8FC01F8FC01F87C01F07C01F07C01F03E03E01E03C01F8FC007FF0001FC00151D7E9C 1A>48 D<00E00001E0000FE000FFE000F3E00003E00003E00003E00003E00003E00003E0 0003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E00003E0 0003E00003E00003E00003E000FFFF80FFFF80111D7C9C1A>I<07F0001FFE00383F007C 1F80FE0FC0FE0FC0FE0FE0FE07E07C07E03807E0000FE0000FC0000FC0001F80001F0000 3E0000780000F00000E00001C0000380600700600E00601C00E01FFFC03FFFC07FFFC0FF FFC0FFFFC0131D7D9C1A>I<01FC0007FF000E0F801E0FC03F07E03F07E03F07E03F07E0 1E0FC0000FC0000F80001F0001FC0001FC00000F800007C00003E00003F00003F83803F8 7C03F8FE03F8FE03F8FE03F0FC03F07807E03C0FC01FFF8003FC00151D7E9C1A>I<0001 C00003C00007C00007C0000FC0001FC0003BC00073C00063C000C3C00183C00383C00703 C00E03C00C03C01803C03803C07003C0E003C0FFFFFEFFFFFE0007C00007C00007C00007 C00007C00007C000FFFE00FFFE171D7F9C1A>I<3803803FFF803FFF003FFE003FFC003F F0003F800030000030000030000030000033F8003FFE003C1F00380F803007C00007C000 07E00007E07807E0FC07E0FC07E0FC07E0FC07C0780FC0600F80381F001FFC0007F00013 1D7D9C1A>I<003F0001FFC007E0E00F81E01F03F01E03F03E03F07C03F07C01E07C0000 FC1000FCFF00FDFFC0FD03E0FE01F0FE01F0FC01F8FC01F8FC01F8FC01F87C01F87C01F8 7C01F83C01F03E01F01E03E00F07C007FF8001FE00151D7E9C1A>I<6000007FFFF87FFF F87FFFF07FFFE07FFFE0E001C0C00380C00700C00E00000C00001C000038000078000078 0000F00000F00000F00001F00001F00001F00003F00003F00003F00003F00003F00003F0 0003F00003F00001E000151E7D9D1A>I<01FC0007FF000E07801C01C01800E03800E038 00E03C00E03F00E03FC1C01FE3801FFF000FFE0007FF8007FFC01FFFE03C3FF0780FF078 03F8F001F8F000F8F00078F00078F000707800707C00E03E03C00FFF8003FC00151D7E9C 1A>I<01FC000FFF001F07803E03C07C03E07C01E0FC01F0FC01F0FC01F0FC01F8FC01F8 FC01F8FC01F87C03F87C03F83E05F81FFDF807F9F80041F80001F03C01F07E01F07E03E0 7E03E07E07C03C0780381F001FFC0007F000151D7E9C1A>I<387CFEFEFE7C3800000000 0000387CFEFEFE7C3807147C930F>I<0000E000000000E000000001F000000001F00000 0001F000000003F800000003F800000006FC00000006FC0000000EFE0000000C7E000000 0C7E000000183F000000183F000000303F800000301F800000701FC00000600FC0000060 0FC00000C007E00000FFFFE00001FFFFF000018003F000018003F000030001F800030001 F800060001FC00060000FC000E0000FE00FFE00FFFE0FFE00FFFE0231F7E9E28>65 DI<0007FC02003FFF0E00FE03DE 03F000FE07E0003E0FC0001E1F80001E3F00000E3F00000E7F0000067E0000067E000006 FE000000FE000000FE000000FE000000FE000000FE000000FE0000007E0000007E000006 7F0000063F0000063F00000C1F80000C0FC0001807E0003803F0007000FE01C0003FFF80 0007FC001F1F7D9E26>II76 DI80 D82 D<03FC080FFF381E03F83800F8700078700038F00038F00018F00018F80000FC00007FC0 007FFE003FFF801FFFE00FFFF007FFF000FFF80007F80000FC00007C00003CC0003CC000 3CC0003CE00038E00078F80070FE01E0E7FFC081FF00161F7D9E1D>I<7FFFFFFC7FFFFF FC7C07E07C7007E01C6007E00C6007E00CE007E00EC007E006C007E006C007E006C007E0 060007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E0 000007E0000007E0000007E0000007E0000007E0000007E0000007E0000007E00003FFFF C003FFFFC01F1E7E9D24>I87 DI<07FC001FFF003F0F803F07C03F03E03F03E00C03E00003E0007FE007FBE01F03E0 3C03E07C03E0F803E0F803E0F803E0FC05E07E0DE03FF9FE0FE07E17147F9319>97 D<01FE0007FF801F0FC03E0FC03E0FC07C0FC07C0300FC0000FC0000FC0000FC0000FC00 00FC00007C00007E00003E00603F00C01F81C007FF0001FC0013147E9317>99 D<0007F80007F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000 F801F8F80FFEF81F83F83E01F87E00F87C00F87C00F8FC00F8FC00F8FC00F8FC00F8FC00 F8FC00F87C00F87C00F87E00F83E01F81F07F80FFEFF03F8FF18207E9F1D>I<01FE0007 FF801F83E03F01F07E00F07E00F8FC00F8FC00F8FFFFF8FFFFF8FC0000FC0000FC00007C 00007E00003E00183F00380F807007FFE000FF8015147F9318>I<001F8000FFC001F3E0 03E7E003C7E007C7E007C3C007C00007C00007C00007C00007C000FFFC00FFFC0007C000 07C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C00007C000 07C00007C00007C0003FFC003FFC0013207F9F10>I<01FC3C07FFFE0F079E1E03DE3E03 E03E03E03E03E03E03E03E03E01E03C00F07800FFF0009FC001800001800001C00001FFF 800FFFF007FFF81FFFFC3C007C70003EF0001EF0001EF0001E78003C78003C3F01F80FFF E001FF00171E7F931A>II<1C003F007F007F007F003F001C00000000000000000000000000FF00FF00 1F001F001F001F001F001F001F001F001F001F001F001F001F001F001F001F00FFE0FFE0 0B217EA00E>I107 DIII<01FF00 07FFC01F83F03E00F83E00F87C007C7C007CFC007EFC007EFC007EFC007EFC007EFC007E 7C007C7C007C3E00F83E00F81F83F007FFC001FF0017147F931A>II114 D<0FE63FFE701E600EE006E006F800FFC07FF83FFC1FFE03FE00 1FC007C007E007F006F81EFFFCC7F010147E9315>I<0180018001800380038003800780 0F803F80FFFCFFFC0F800F800F800F800F800F800F800F800F800F800F860F860F860F86 0F8607CC03F801F00F1D7F9C14>II121 D E /Fh 36 122 df45 D<387CFEFEFE7C3807077C8610 >I<00180000780001F800FFF800FFF80001F80001F80001F80001F80001F80001F80001 F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001F80001 F80001F80001F80001F80001F80001F80001F8007FFFE07FFFE013207C9F1C>49 D<03FC000FFF003C1FC07007E07C07F0FE03F0FE03F8FE03F8FE01F87C01F83803F80003 F80003F00003F00007E00007C0000F80001F00003E0000380000700000E01801C0180380 180700180E00380FFFF01FFFF03FFFF07FFFF0FFFFF0FFFFF015207D9F1C>I<00FE0007 FFC00F07E01E03F03F03F03F81F83F81F83F81F81F03F81F03F00003F00003E00007C000 1F8001FE0001FF000007C00001F00001F80000FC0000FC3C00FE7E00FEFF00FEFF00FEFF 00FEFF00FC7E01FC7801F81E07F00FFFC001FE0017207E9F1C>I<1000201E01E01FFFC0 1FFF801FFF001FFE001FF8001BC00018000018000018000018000019FC001FFF001E0FC0 1807E01803E00003F00003F00003F80003F83803F87C03F8FE03F8FE03F8FC03F0FC03F0 7007E03007C01C1F800FFF0003F80015207D9F1C>53 D<000070000000007000000000F8 00000000F800000000F800000001FC00000001FC00000003FE00000003FE00000003FE00 000006FF000000067F0000000E7F8000000C3F8000000C3F800000183FC00000181FC000 00381FE00000300FE00000300FE00000600FF000006007F00000E007F80000FFFFF80000 FFFFF800018001FC00018001FC00038001FE00030000FE00030000FE000600007F000600 007F00FFE00FFFF8FFE00FFFF825227EA12A>65 D77 DI<0007FC0000003FFF800000FC07E00003F001F80007E0 00FC000FC0007E001F80003F001F80003F003F00001F803F00001F807F00001FC07E0000 0FC07E00000FC0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000FE0FE00000F E0FE00000FE0FE00000FE0FE00000FE07E00000FC07F00001FC07F00001FC03F00001F80 3F80003F801F80003F000FC0007E0007E000FC0003F001F80000FC07E000003FFF800000 07FC000023227DA12A>II82 D<01FC0407FF8C1F03FC3C007C7C003C78001C78001CF8000CF8000CFC 000CFC0000FF0000FFE0007FFF007FFFC03FFFF01FFFF80FFFFC03FFFE003FFE0003FF00 007F00003F00003FC0001FC0001FC0001FE0001EE0001EF0003CFC003CFF00F8C7FFE080 FF8018227DA11F>I<7FFFFFFF807FFFFFFF807E03F80F807803F807807003F803806003 F80180E003F801C0E003F801C0C003F800C0C003F800C0C003F800C0C003F800C00003F8 00000003F800000003F800000003F800000003F800000003F800000003F800000003F800 000003F800000003F800000003F800000003F800000003F800000003F800000003F80000 0003F800000003F800000003F800000003F800000003F8000003FFFFF80003FFFFF80022 227EA127>I<7FFFC1FFF07FFFC1FFF003FC000C0001FE00180000FE00380000FF007000 007F806000003F80C000003FC1C000001FE38000000FE30000000FF700000007FE000000 03FC00000003FC00000001FE00000000FE00000000FF00000000FF80000001FFC0000001 BFC00000031FE00000070FF000000E0FF000000C07F800001803FC00003803FC00003001 FE00006000FF0000E000FF0001C0007F800180003FC0FFFC03FFFEFFFC03FFFE27227FA1 2A>88 D<07FC001FFF803F07C03F03E03F01E03F01F01E01F00001F00001F0003FF003FD F01FC1F03F01F07E01F0FC01F0FC01F0FC01F0FC01F07E02F07E0CF81FF87F07E03F1816 7E951B>97 D<00FF8007FFE00F83F01F03F03E03F07E03F07C01E07C0000FC0000FC0000 FC0000FC0000FC0000FC00007C00007E00007E00003E00301F00600FC0E007FF8000FE00 14167E9519>99 D<0001FE000001FE0000003E0000003E0000003E0000003E0000003E00 00003E0000003E0000003E0000003E0000003E0000003E0001FC3E0007FFBE000F81FE00 1F007E003E003E007E003E007C003E00FC003E00FC003E00FC003E00FC003E00FC003E00 FC003E00FC003E00FC003E007C003E007C003E003E007E001E00FE000F83BE0007FF3FC0 01FC3FC01A237EA21F>I<00FE0007FF800F87C01E01E03E01F07C00F07C00F8FC00F8FC 00F8FFFFF8FFFFF8FC0000FC0000FC00007C00007C00007E00003E00181F00300FC07003 FFC000FF0015167E951A>I<003F8000FFC001E3E003C7E007C7E00F87E00F83C00F8000 0F80000F80000F80000F80000F8000FFFC00FFFC000F80000F80000F80000F80000F8000 0F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F80000F8000 0F80007FF8007FF80013237FA211>I<03FC1E0FFF7F1F0F8F3E07CF3C03C07C03E07C03 E07C03E07C03E07C03E03C03C03E07C01F0F801FFF0013FC003000003000003800003FFF 801FFFF00FFFF81FFFFC3800FC70003EF0001EF0001EF0001EF0001E78003C7C007C3F01 F80FFFE001FF0018217E951C>II<1C003F007F007F007F003F001C000000000000 000000000000000000FF00FF001F001F001F001F001F001F001F001F001F001F001F001F 001F001F001F001F001F001F00FFE0FFE00B247EA310>I107 DIII<00FE0007FFC00F83E01E00F0 3E00F87C007C7C007C7C007CFC007EFC007EFC007EFC007EFC007EFC007EFC007E7C007C 7C007C3E00F81F01F00F83E007FFC000FE0017167E951C>II114 D<0FF3003FFF00781F00600700E00300E003 00F00300FC00007FE0007FF8003FFE000FFF0001FF00000F80C00780C00380E00380E003 80F00700FC0E00EFFC00C7F00011167E9516>I<01800001800001800001800003800003 80000780000780000F80003F8000FFFF00FFFF000F80000F80000F80000F80000F80000F 80000F80000F80000F80000F80000F80000F81800F81800F81800F81800F81800F830007 C30003FE0000F80011207F9F16>IIII121 D E /Fi 25 119 df<60F0F06004047D830B>46 D<003F0201C0C603002E0E001E1C000E1C 0006380006780002700002700002F00000F00000F00000F00000F00000F0000070000270 00027800023800041C00041C00080E000803003001C0C0003F00171A7E991C>67 DI73 D<1FFC00E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000 E000E000E000E040E0E0E0E0E041C061801E000E1A7D9914>I82 D<3F8070C070E020700070007007F01C7030707070E070E071E071E0F171FB1E3C10107E 8F13>97 DI<07F80C1C381C30087000E000E000E000E000 E000E0007000300438080C1807E00E107F8F11>I<007E00000E00000E00000E00000E00 000E00000E00000E00000E00000E0003CE000C3E00380E00300E00700E00E00E00E00E00 E00E00E00E00E00E00E00E00600E00700E00381E001C2E0007CFC0121A7F9915>I<07C0 1C3030187018600CE00CFFFCE000E000E000E0006000300438080C1807E00E107F8F11> I<01F0031807380E100E000E000E000E000E000E00FFC00E000E000E000E000E000E000E 000E000E000E000E000E000E000E007FE00D1A80990C>I104 D<18003C003C001800000000000000000000000000FC001C001C001C001C001C001C 001C001C001C001C001C001C001C001C00FF80091A80990A>I107 DIII<07E01C38300C700E6006E007E007E007E007E007E0076006700E 381C1C3807E010107F8F13>II114 D<1F2060E04020C020C020F0007F00 3FC01FE000F080708030C030C020F0408F800C107F8F0F>I<0400040004000C000C001C 003C00FFC01C001C001C001C001C001C001C001C001C201C201C201C201C200E4003800B 177F960F>III E /Fj 1 4 df<0C000C008C40EDC07F800C007F80EDC08C400C000C00 0A0B7D8B10>3 D E /Fk 63 124 df<00003F03E00000C386700001878CF00003879CF0 0003031860000700380000070038000007003800000E003800000E007000000E00700000 0E00700000FFFFFF80001C007000001C00E000001C00E000001C00E000001C00E0000038 00E000003801C000003801C000003801C000003801C000007001C0000070038000007003 800000700380000070038000006003800000E007000000E007000000E007000000E00700 0000C006000001C00E000001C00E000031860C0000798F180000F31E100000620C600000 3C07C000002429829F1C>11 D<00003FE00000E010000180380003807800030078000700 30000700000007000000070000000E0000000E0000000E000000FFFFE0000E00E0001C01 C0001C01C0001C01C0001C01C0001C038000380380003803800038038000380700003807 00007007000070071000700E2000700E2000700E2000E00E2000E0064000E0038000E000 0000C0000001C0000001C000003180000079800000F3000000620000003C0000001D2982 9F1A>I<00003FC0FF800000E0E38040000181E600E0000381EC01E0000300DC01E00007 001C00C0000700180000000700380000000E00380000000E00380000000E00380000000E 0070000000FFFFFFFF80001C00700380001C00700700001C00700700001C00700700001C 00E00700001C00E00E00003800E00E00003800E00E00003800E00E00003801C01C000038 01C01C00007001C01C00007001C01C40007001C0388000700380388000700380388000E0 0380388000E00380190000E003000E0000E00700000000C00700000001C00600000001C0 0600000031860E000000798F0C000000F31E18000000620C300000003C07C00000002B29 829F28>14 D<000100020004000800100020006000C0018001800300070006000E000C00 1C0018003800380030007000700060006000E000E000C000C000C000C000C000C000C000 C000C000C000C000C000C0004000600060002000100010000800102E79A113>40 D<0010000008000004000006000002000003000003000003000001000001800001800001 800001800001800001800001800003800003800003800003000003000003000007000007 00000600000600000E00000C00000C00001C0000180000380000300000700000600000E0 0000C0000180000100000300000600000C0000180000300000600000800000112E80A113 >I<1C3C3C3C3C040408081020204080060E7D840E>44 D<7FF0FFE07FE00C037D8A10>I< 70F8F8F0E005057B840E>I<000F800030E000E07001C0700380300380380700380F0078 0F00780E00781E00781E00703C00F03C00F03C00F03C00F07801E07801E07801E07801C0 7003C0F003C0F00380F00780F00700700700700E00701C003038001870000FC000151F7C 9D17>48 D<000200020006000E003C00DC031C001C003800380038003800700070007000 7000E000E000E000E001C001C001C001C003800380038003800780FFF80F1E7B9D17>I< 001F000061800080E00100E00200700220700420700410700820F00820F00820F00840E0 0881E00703C0000380000700000C00001800006000008000030000040000080040100040 1000802001807E030047FF0041FE0080FC00807800141F7C9D17>I<001F800060E00080 700100300200380420380420380410380420700460700380600000E00001C000030000FE 00001C00000600000700000780000780000780300780780780780780F00F00800F00401E 00401C0040380020E0001F8000151F7C9D17>I<0000600000E00000E00000E00001C000 01C00001C0000380000380000300000700000700000600000E00000C0000180000180000 300000300000630000C700008700010700030700060E00040E00080E003F8E00607C0080 1FC0001C00001C0000380000380000380000380000700000700000600013277E9D17>I< 00C06000FFC001FF8001FE00010000010000020000020000020000020000040000047800 058C000606000C0700080700000780000780000780000780000F00700F00F00F00F00E00 E01E00801C0080380080300040600061C0001F0000131F7B9D17>I<0007C0001C200030 200060E000C1E00181E00380C00700000F00000E00001E00001E78001D84003E06003E07 003C07007C0780780780780780780780700F00700F00F00F00F00E00F01E00701C00601C 0070380030700010C0000F8000131F7B9D17>I<08E0100BF01017F0201FF0603E19C038 0E80200080600100400300800300000600000E00000C00001C00001C0000380000380000 700000700000F00000F00001E00001E00001E00003C00003C00003C00007C00007800007 8000030000141F799D17>I<001F000061800080C0010060030060060060060060060060 0E00C00F00800F818007C30007E40003F80001F80003FC00047E00183F00300F00200700 600700C00300C00300C00300800600800600C00C00C008004030003060001F8000131F7B 9D17>I<001F0000718000C0C00180C00380E00700E00F00E00F01E01E01E01E01E01E01 E01E01C01C03C01C03C01C03C01C07C01C0F800C0F8006378003C700000F00000E00000E 00001C00601C00F03800F07000E0600080C0004380003E0000131F7B9D17>I<070F1F1F 0E0000000000000000000070F8F8F0E008147B930E>I<00000200000006000000060000 000E0000001E0000001E0000003F0000002F0000004F0000004F0000008F0000010F0000 010F0000020F0000020F0000040F00000C0F0000080F0000100F0000100F0000200F8000 3FFF800040078000C007800080078001000780010007800200078002000780060007801E 000F80FF807FF81D207E9F22>65 D<01FFFFC0001E00F0001E0078001E0038001E003C00 3C003C003C003C003C003C003C003C0078007800780078007800F0007801E000F0078000 FFFE0000F00F8000F003C001E001C001E001E001E001E001E001E003C001E003C001E003 C001E003C001C0078003C00780078007800F0007801E000F007800FFFFE0001E1F7D9E20 >I<0000FE0200078186001C004C0038003C0060003C00C0001C01C00018038000180700 00180F0000181E0000101E0000103C0000003C0000007800000078000000780000007800 0000F0000000F0000000F0000000F0000000F00000807000008070000080700001003800 010038000200180004000C001800060020000381C00000FE00001F217A9F21>I<01FFFF 80001E00E0001E0070001E0038001E001C003C001C003C000E003C000E003C000E007800 0E0078000E0078000E0078000E00F0001E00F0001E00F0001E00F0001E01E0003C01E000 3C01E0003C01E0007803C0007003C0007003C000E003C001C0078001C00780038007800E 0007801C000F007000FFFFC0001F1F7D9E22>I<01FFFFFE001E001C001E000C001E0004 001E0004003C0004003C0004003C0004003C000400780808007808000078080000781800 00F0300000FFF00000F0300000F0300001E0200001E0200001E0200001E0001003C00020 03C0002003C0004003C00040078000800780018007800100078007000F001F00FFFFFE00 1F1F7D9E1F>I<01FFFFFC001E0038001E0018001E0008001E0008003C0008003C000800 3C0008003C00080078001000780800007808000078080000F0100000F0300000FFF00000 F0300001E0200001E0200001E0200001E0200003C0000003C0000003C0000003C0000007 8000000780000007800000078000000F800000FFF800001E1F7D9E1E>I<01FFF0001F00 001E00001E00001E00003C00003C00003C00003C0000780000780000780000780000F000 00F00000F00000F00001E00001E00001E00001E00003C00003C00003C00003C000078000 0780000780000780000F8000FFF800141F7D9E12>73 D<001FFF0000F80000F00000F000 00F00001E00001E00001E00001E00003C00003C00003C00003C000078000078000078000 0780000F00000F00000F00000F00001E00001E00301E00781E00F83C00F83C00F0780080 700040E00021C0001F000018207D9E18>I<01FFF800001F0000001E0000001E0000001E 0000003C0000003C0000003C0000003C00000078000000780000007800000078000000F0 000000F0000000F0000000F0000001E0000001E0000001E0000001E0008003C0010003C0 010003C0030003C00200078006000780060007800C0007801C000F007800FFFFF800191F 7D9E1D>76 D<01FE00007FC0001E0000FC00001E0000F800001700017800001700017800 00270002F00000270004F00000270004F00000270008F00000470009E00000470011E000 00470021E00000470021E00000870043C00000838043C00000838083C00000838083C000 0103810780000103820780000103820780000103840780000203840F00000203880F0000 0203900F00000203900F00000401E01E00000401E01E00000401C01E00000C01801E0000 1C01803E0000FF8103FFC0002A1F7D9E29>I<01FF007FE0001F000F00001F0004000017 800400001780040000278008000023C008000023C008000023C008000041E010000041E0 10000041F010000040F010000080F0200000807820000080782000008078200001003C40 0001003C400001003C400001001E400002001E800002001E800002000F800002000F8000 04000F0000040007000004000700000C000700001C00020000FF80020000231F7D9E22> I<0001FC0000070700001C01C0003000E000E0006001C000700380007007800038070000 380E0000381E0000381C0000383C0000383C000038780000787800007878000078780000 78F00000F0F00000F0F00000E0F00001E0F00001C0F00003C0700003807000070078000F 0038001E0038003C001C0070000E00E0000783800001FC00001D217A9F23>I<01FFFF80 001E00E0001E0070001E0038001E003C003C003C003C003C003C003C003C003C00780078 00780078007800F0007800E000F003C000F00F0000FFFC0000F0000001E0000001E00000 01E0000001E0000003C0000003C0000003C0000003C00000078000000780000007800000 078000000F800000FFF000001E1F7D9E1F>I<01FFFF00001E03C0001E00E0001E007000 1E0078003C0078003C0078003C0078003C0078007800F0007800F0007801E0007801C000 F0070000F01E0000FFF00000F0380001E01C0001E01E0001E00E0001E00F0003C01E0003 C01E0003C01E0003C01E0007803C0007803C0807803C0807803C100F801C10FFF00C2000 0007C01D207D9E21>82 D<0007E040001C18C0003005800060038000C0038001C0018001 8001000380010003800100038001000380000003C0000003C0000003F8000001FF800001 FFE000007FF000001FF0000001F800000078000000780000003800000038002000380020 0038002000300060007000600060006000E0007000C000E8038000C606000081F800001A 217D9F1A>I<0FFFFFF01E0780E0180780201007802020078020200F0020600F0020400F 0020400F0020801E0040001E0000001E0000001E0000003C0000003C0000003C0000003C 00000078000000780000007800000078000000F0000000F0000000F0000000F0000001E0 000001E0000001E0000001E0000003E00000FFFF00001C1F789E21>I86 D<00FFF07FE0000F801F00000F001C00 000F801000000780300000078020000007C040000003C080000003C100000003E2000000 01E400000001EC00000001F800000000F000000000F800000000F800000000F800000001 7C000000023C000000063C000000043E000000081E000000101E000000201F000000400F 000000800F000001800F8000010007800007000780001F000FC000FFC07FF800231F7E9E 22>88 D<00F1800389C00707800E03801C03803C0380380700780700780700780700F00E 00F00E00F00E00F00E20F01C40F01C40703C40705C40308C800F070013147C9317>97 D<07803F8007000700070007000E000E000E000E001C001C001CF01D0C3A0E3C0E380F38 0F700F700F700F700FE01EE01EE01EE01CE03CE038607060E031C01F0010207B9F15>I< 007E0001C1000300800E07801E07801C07003C0200780000780000780000F00000F00000 F00000F00000F0000070010070020030040018380007C00011147C9315>I<0000780003 F80000700000700000700000700000E00000E00000E00000E00001C00001C000F1C00389 C00707800E03801C03803C0380380700780700780700780700F00E00F00E00F00E00F00E 20F01C40F01C40703C40705C40308C800F070015207C9F17>I<007C01C207010E011C01 3C013802780C7BF07C00F000F000F000F0007000700170023804183807C010147C9315> I<00007800019C00033C00033C000718000700000700000E00000E00000E00000E00000E 0001FFE0001C00001C00001C00001C000038000038000038000038000038000070000070 0000700000700000700000700000E00000E00000E00000E00000C00001C00001C0000180 003180007B0000F300006600003C00001629829F0E>I<003C6000E27001C1E00380E007 00E00F00E00E01C01E01C01E01C01E01C03C03803C03803C03803C03803C07003C07001C 0F001C17000C2E0003CE00000E00000E00001C00001C00301C00783800F0700060E0003F 8000141D7E9315>I<01E0000FE00001C00001C00001C00001C000038000038000038000 038000070000070000071E000763000E81800F01C00E01C00E01C01C03801C03801C0380 1C0380380700380700380700380E10700E20700C20701C20700C40E00CC060070014207D 9F17>I<00C001E001E001C000000000000000000000000000000E003300230043804300 470087000E000E000E001C001C001C003840388030807080310033001C000B1F7C9E0E> I<0001800003C00003C0000380000000000000000000000000000000000000000000003C 00004600008700008700010700010700020E00000E00000E00000E00001C00001C00001C 00001C0000380000380000380000380000700000700000700000700000E00000E00030E0 0079C000F180006300003C00001228829E0E>I<01E0000FE00001C00001C00001C00001 C0000380000380000380000380000700000700000703C00704200E08E00E11E00E21E00E 40C01C80001D00001E00001FC00038E00038700038700038384070708070708070708070 3100E03100601E0013207D9F15>I<03C01FC0038003800380038007000700070007000E 000E000E000E001C001C001C001C0038003800380038007000700070007100E200E200E2 00E200640038000A207C9F0C>I<1C0F80F0002630C318004740640C004780680E004700 700E004700700E008E00E01C000E00E01C000E00E01C000E00E01C001C01C038001C01C0 38001C01C038001C01C0708038038071003803806100380380E100380380620070070066 00300300380021147C9325>I<1C0F802630C04740604780604700704700708E00E00E00 E00E00E00E00E01C01C01C01C01C01C01C03843803883803083807083803107003303001 C016147C931A>I<007C0001C3000301800E01C01E01C01C01E03C01E07801E07801E078 01E0F003C0F003C0F003C0F00780F00700700F00700E0030180018700007C00013147C93 17>I<01C1E002621804741C04781C04701E04701E08E01E00E01E00E01E00E01E01C03C 01C03C01C03C01C0380380780380700380E003C1C0072380071E000700000700000E0000 0E00000E00000E00001C00001C0000FFC000171D809317>I<00F0400388C00705800E03 801C03803C0380380700780700780700780700F00E00F00E00F00E00F00E00F01C00F01C 00703C00705C0030B8000F380000380000380000700000700000700000700000E00000E0 000FFE00121D7C9315>I<1C1E002661004783804787804707804703008E00000E00000E 00000E00001C00001C00001C00001C000038000038000038000038000070000030000011 147C9313>I<00FC030206010C030C070C060C000F800FF007F803FC003E000E700EF00C F00CE008401020601F8010147D9313>I<018001C0038003800380038007000700FFF007 000E000E000E000E001C001C001C001C003800380038003820704070407080708031001E 000C1C7C9B0F>I<0E00C03300E02301C04381C04301C04701C08703800E03800E03800E 03801C07001C07001C07001C07101C0E20180E20180E201C1E200C264007C38014147C93 18>I<0E03803307802307C04383C04301C04700C08700800E00800E00800E00801C0100 1C01001C01001C02001C02001C04001C04001C08000E300003C00012147C9315>I<0E00 C1C03300E3C02301C3E04381C1E04301C0E04701C060870380400E0380400E0380400E03 80401C0700801C0700801C0700801C0701001C0701001C0602001C0F02000C0F04000E13 080003E1F0001B147C931E>I<0383800CC4401068E01071E02071E02070C040E00000E0 0000E00000E00001C00001C00001C00001C040638080F38080F38100E5810084C6007878 0013147D9315>I<0E00C03300E02301C04381C04301C04701C08703800E03800E03800E 03801C07001C07001C07001C07001C0E00180E00180E001C1E000C3C0007DC00001C0000 1C00003800F03800F07000E06000C0C0004380003E0000131D7C9316>I123 D E /Fl 18 116 df<07C01C00300060006000FF00C000C000C000C000C000 400030C01F000A0E7E8D0E>15 D<383C44C6470246028E060C060C060C06180C180C180C 180C301830180018001800300030003000200F147F8D12>17 D<60F0F070101020204040 040A7D830A>59 D<0018001800380030003000700060006000E000C001C0018001800380 030003000700060006000E000C000C001C001800380030003000700060006000E000C000 C0000D217E9812>61 D<07FF0000E00000E00000E00000E00001C00001C00001C00001C0 000380000380000380000380000700000700080700080700100E00100E00300E00200E00 601C01E0FFFFC015177F9618>76 D<001FC000707001C01803001C06000C0E000E1C000E 18000E38000E30000E70000E70000E70000E70001CE0001C6000387000387000707000E0 3801C01803800E0E0003F00017177F961B>79 D<00300048008801880108031002100610 06200C400C400C800D001A001A001C0018001800780088000810046003800D1780960E> 96 D<071018F0307060706060C060C060C06080C080C480C4C1C446C838700E0E7E8D13> I<07C00C20107020706000C000C000C00080008000C010C02060C03F000C0E7E8D0F>99 D<003E000C000C000C000C0018001800180018073018F0307060706060C060C060C06080 C080C480C4C1C446C838700F177E9612>I<030003800300000000000000000000000000 1C002400460046008C000C0018001800180031003100320032001C0009177F960C>105 D<00180038001000000000000000000000000001C0022004300430086000600060006000 C000C000C000C001800180018001806300E300C60078000D1D80960E>I<1F0006000600 060006000C000C000C000C00181C1866188E190C32003C003F00318060C060C460C460C8 C0C8C0700F177E9612>I<383C1E0044C6630047028100460301008E0703000C0603000C 0603000C060600180C0600180C0620180C0C20180C0C4030180440301807801B0E7F8D1F >109 D<383C0044C6004702004602008E06000C06000C06000C0C00180C00180C401818 40181880300880300F00120E7F8D15>I<071018D0307060706060C060C060C06080C080 C080C0C1C047803980018001800300030003001FC00C147E8D10>113 D<38F04518463846308C000C000C000C001800180018001800300030000D0E7F8D10>I< 07C00C201870187038001E000FC003E000606060E060C0C0C1803F000C0E7E8D10>I E /Fm 12 112 df<00FC000303000E01C01C00E0380070300030700038700038E0001CE2 011CE3FF1CE3FF1CE3FF1CE2011CE0001C6000187000383000303800701C00E00E01C003 030000FC0016177E961B>2 D<0102040C1818303070606060E0E0E0E0E0E0E0E0E0E060 606070303018180C04020108227D980E>40 D<8040203018180C0C0E0606060707070707 07070707070606060E0C0C18183020408008227E980E>I<003000003000003000003000 003000003000003000003000003000003000003000FFFFFCFFFFFC003000003000003000 00300000300000300000300000300000300000300000300016187E931B>43 D<03000700FF000700070007000700070007000700070007000700070007000700070007 00070007007FF00C157E9412>49 D<0F8030E040708030C038E038403800380070007000 6000C00180030006000C08080810183FF07FF0FFF00D157E9412>I<0FE030306018701C 701C001C00180038006007E000300018000C000E000EE00EE00EC00C401830300FE00F15 7F9412>I61 D<0F9E18E33060707070707070306018C02F80200060003FE03FF83FFC60 0EC006C006C006600C38380FE010157F8D12>103 D108 D110 D<07C018303018600C600CE00EE00EE00E E00EE00E701C3018183007C00F0E7F8D12>I E /Fn 17 107 df0 D<70F8F8F87005057C8D0D>I<07E01FF83FFC7FFE7FFEFFFFFFFFFFFFFFFF FFFFFFFFFFFFFFFF7FFE7FFE3FFC1FF807E010127D9317>15 D<000000C0000003C00000 0F0000003C000000F0000003C000000F0000001C00000078000001E00000078000001E00 000078000000E0000000780000001E0000000780000001E0000000780000001C0000000F 00000003C0000000F00000003C0000000F00000003C0000000C000000000000000000000 000000000000000000000000000000000000FFFFFFC0FFFFFFC01A247C9C23>20 DI<007FFFC001FFFFC0078000000E0000001C0000003800000030000000 700000006000000060000000E0000000C0000000C0000000C0000000C0000000C0000000 C0000000E000000060000000600000007000000030000000380000001C0000000E000000 0780000001FFFFC0007FFFC01A1C7C9823>26 D<00000004000000000200000000020000 00000100000000008000000000400000000020FFFFFFFFFCFFFFFFFFFC00000000200000 0000400000000080000000010000000002000000000200000000040026107D922D>33 D<07C000101FE000103FF80010783C0030601E0030C0078060C003C1E08001FFC080007F 8080003E0000000000000000000000000000000000000000000000000000000000000000 00FFFFFFF0FFFFFFF01C147D9423>39 D<03E0001F000FFC007FC01C7E00C020301F0180 10600F8300084007C600084003EC00088001F800048001F800048000F8000480007C0004 80007E000480007E00044000DF000840018F8008400307C018200603E030100C01F8E00F F800FFC003E0001F0026147D932D>49 D<007FF801FFF80780000E00001C000038000030 0000700000600000600000E00000C00000C00000FFFFF8FFFFF8C00000C00000E0000060 00006000007000003000003800001C00000E000007800001FFF8007FF8151C7C981E>I< 00000C00000C00001C0000180000380000300000700000600000E00000C00001C0000180 000380000300000700000600000E00000C00001C00001800003800003000003000007000 00600000E00000C00001C0000180000380000300000700000600000E00000C00001C0000 180000380000300000700000600000E00000C00000C00000162C7AA000>54 D<0000FC0007FE001C3E00201E00C01E01801C03801C07003C0600380E00381C00601C00 003C0000380000380000780000780000700000700000F00000F00000F00000F00000F000 00F00000F80018F800307800707C00C07E00803F83001FFC0007F0001721809F18>67 D<00007FFFE00003FFFFF0000E3801E000303800C0006078000000E078000001C0700000 01807000000000F000000000F000000000E000000000E000000001E000000001C0000000 01C000000003FFF8000003FFF000000380000000070000000007000000000F000000000E 000000000E000000001C000000001C000000003800000000380000003070000000787000 0000FCC00000007F800000003E0000000024207F9E21>70 D95 D<000F0038006000E001C001C001C001C001C001C001C001C001C001 C001C001C001C001C001C0038007001E00F8001E000700038001C001C001C001C001C001 C001C001C001C001C001C001C001C001C001C000E000600038000F102D7DA117>102 DI106 D E /Fo 50 123 df<001E0000610000C0800180800180000380000300 0003800003800003C00001F00000F800007C0001FC00070E000E0E001E06001C06003C06 00780600780600780600F00400F00400F00C00F00800F008007018007010003020001840 000F800011207E9F14>14 D<007E01C007000E001C003C003800780078007FF0F000F000 F000700070007000300018000C1807E00F147E9312>I<1E07C023186023A03043C03043 80384380388700700700700700700700700E00E00E00E00E00E00E00E01C01C01C01C01C 01C01C01C0380380180380000380000380000700000700000700000700000E00000E0000 0E00000C00151E7E9317>17 D<0000400000400000800000800000800000800001000001 00000100000100000200000200001FC000E27003841806040C0C040E1C04063808073008 07700807700807E0100EE0100EE0100CE0101C6020387020303020601821C00E470003F8 0000400000400000800000800000800000800001000001000001000018297E9F1B>30 D<0F00008013C0010021C0010001E0020000E0040000F008000070100000702000007840 000038400000388000003D0000001E0000001C0000001C0000000E0000001E0000002E00 00004F000000870000010700000207800002038000040380000803C0001001C0002001E2 004000E20080003C00191D7F931C>I<0000100000001000000010000000200000002000 000020000000200000004000000040000000400000004000000080000F008180118083C0 218083E021C101E041C100E043810060838100400702004007020040070200400E020080 0E0400800E0401000E0401000E0402000E080400060808000708300001C8C000007F0000 001000000010000000100000002000000020000000200000002000000040000000400000 1B297E9F1E>I<70F8F8F87005057C840D>58 D<70F8FCFC74040404080810102040060E 7C840D>I<000001C00000078000001E00000078000001E00000078000000E0000003C00 0000F0000003C000000F0000003C000000F0000000F00000003C0000000F00000003C000 0000F00000003C0000000E0000000780000001E0000000780000001E0000000780000001 C01A1A7C9723>I<00030003000700060006000E000C000C001C00180018003800300030 00700060006000E000C000C001C00180018001800380030003000700060006000E000C00 0C001C0018001800380030003000700060006000E000C000C000102D7DA117>II< 000002000000060000000E0000000E0000001E0000001F0000002F0000002F0000004F00 00008F0000008F0000010F0000010F0000020F0000040F0000040F0000080F8000080780 001007800020078000200780007FFF800040078000800780018007800100078002000780 020007C0040003C00C0003C01E0007C0FF807FFC1E207E9F22>65 D<00FFFFE0000F0078000F003C000F001C000F001E001E001E001E001E001E001E001E00 1E003C003C003C003C003C0078003C00F0007803C0007FFF80007803C0007801E000F000 F000F000F000F000F000F0007001E000F001E000F001E000F001E000E003C001E003C003 C003C0038003C00F0007801E00FFFFF0001F1F7E9E22>I<0000FE0200078186001C004C 0038003C0060003C00C0001C01C0001803800018070000180F0000181E0000101E000010 3C0000003C00000078000000780000007800000078000000F0000000F0000000F0000000 F0000000F00000807000008070000080700001003800010038000200180004000C001800 060020000381C00000FE00001F217E9F21>I<00FFFFFF000F000E000F0006000F000200 0F0002001E0002001E0002001E0002001E0002003C0404003C0400003C0400003C0C0000 781800007FF800007818000078180000F0100000F0100000F0100000F0000401E0000801 E0000801E0001001E0001003C0002003C0006003C0004003C001C0078007C0FFFFFF8020 1F7E9E22>69 D<00FFF9FFF0000F801F00000F001E00000F001E00000F001E00001E003C 00001E003C00001E003C00001E003C00003C007800003C007800003C007800003C007800 007800F000007FFFF000007800F000007800F00000F001E00000F001E00000F001E00000 F001E00001E003C00001E003C00001E003C00001E003C00003C007800003C007800003C0 07800003C007800007C00F8000FFF8FFF800241F7E9E26>72 D<00FFFC000F80000F0000 0F00000F00001E00001E00001E00001E00003C00003C00003C00003C0000780000780000 780000780000F00000F00000F00000F00001E00001E00001E00001E00003C00003C00003 C00003C00007C000FFFC00161F7F9E14>I<00FFFC00000F8000000F0000000F0000000F 0000001E0000001E0000001E0000001E0000003C0000003C0000003C0000003C00000078 000000780000007800000078000000F0000000F0000000F0000000F0004001E0008001E0 008001E0018001E0010003C0030003C0030003C0060003C00E0007803C00FFFFFC001A1F 7E9E1F>76 D<00FF00001FF0000F00003F00000B80003E00000B80005E00000B80005E00 00138000BC00001380013C00001380013C00001380023C00002380027800002380047800 0023800878000021C00878000041C010F0000041C020F0000041C020F0000041C040F000 0081C041E0000081C081E0000081C101E0000081C101E0000100E203C0000100E203C000 0100E403C0000100E803C0000200E80780000200F00780000200F00780000600E0078000 0F00C00F8000FFE0C1FFF8002C1F7E9E2C>I<00FF803FF0000F800780000F800200000B C00200000BC002000013C004000011E004000011E004000011E004000020F008000020F0 08000020F808000020780800004078100000403C100000403C100000403C100000801E20 0000801E200000801E200000800F200001000F400001000F4000010007C000010007C000 02000780000200038000020003800006000380000F00010000FFE0010000241F7E9E25> I<0001FC0000070700001C01C0003000E000E0006001C000700380007007800038070000 380E0000381E0000381C0000383C0000383C000038780000787800007878000078780000 78F00000F0F00000F0F00000E0F00001E0F00001C0F00003C0700003807000070078000F 0038001E0038003C001C0070000E00E0000783800001FC00001D217E9F23>I<00FFFFC0 000F0070000F0038000F001C000F001E001E001E001E001E001E001E001E001E003C003C 003C003C003C0078003C0070007800E000780380007FFE000078000000F0000000F00000 00F0000000F0000001E0000001E0000001E0000001E0000003C0000003C0000003C00000 03C0000007C00000FFFC00001F1F7E9E1D>I<0001FC0000070700001C01C0003000E000 E000E001C000700380007007800078070000380F0000381E0000381E0000383C0000383C 00007878000078780000787800007878000078F00000F0F00000F0F00000E0F00001E0F0 0001C0F00003C070000380701C070070600F0038811E0038813C001C8170000E81E00007 83808001FD0080000101800001010000038300000386000003FE000003FC000001F80000 00F0001D297E9F24>I<00FFFF80000F01E0000F0070000F0038000F003C001E003C001E 003C001E003C001E003C003C0078003C0078003C00F0003C01E00078038000780F00007F F80000781C0000F00E0000F00F0000F0070000F0078001E00F0001E00F0001E00F0001E0 0F0003C01E0003C01E0203C01E0203C01E0407C00E04FFFC0718000003E01F207E9E23> I<0007E0800018118000300B000060070000C0070001C003000180020003800200038002 0003800200038000000380000003C0000003F8000003FF800001FFC00000FFE000003FF0 000003F0000000F0000000700000007000000070002000700020007000200060006000E0 006000C0006001C00070018000E8030000C60E000081F8000019217D9F1C>I<0FFFFFFC 1E03C0381803C0181003C0082003C00820078008600780084007800840078008800F0010 000F0000000F0000000F0000001E0000001E0000001E0000001E0000003C0000003C0000 003C0000003C00000078000000780000007800000078000000F0000000F0000000F00000 00F0000001F000007FFFC0001E1F7F9E1B>I<007FFFF800FC00F000E001E000C003C001 8007800100078003000F0002001E0002003C00040078000000F8000000F0000001E00000 03C00000078000000F0000000F0000001E0000003C00000078008000F0008001F0010001 E0010003C00300078002000F0006001E0004003E000C003C003C007800F800FFFFF8001D 1F7D9E1F>90 D<000700000C8000188000308000308000608000610000C10000C10001C2 000182000384000384000388000708000710000720000720000E40000E80000F00000E00 000E00000E00000E00001E00002E0000C6010006030006040003180001E0001120809F13 >96 D<00F1800389C00707800E03801C03803C0380380700780700780700780700F00E00 F00E00F00E00F00E10F01C20F01C20703C20705C40308C400F078014147E9318>I<0780 3F8007000700070007000E000E000E000E001C001C001CF01D0C3A0E3C0E380F380F700F 700F700F700FE01EE01EE01EE01CE03CE038607060E031C01F0010207E9F14>I<007C01 C207010E0F1E0F1C0E3C04780078007800F000F000F000F000F00070017002300418380F C010147E9314>I<0000780003F80000700000700000700000700000E00000E00000E000 00E00001C00001C000F1C00389C00707800E03801C03803C038038070078070078070078 0700F00E00F00E00F00E00F00E10F01C20F01C20703C20705C40308C400F078015207E9F 18>I<007C01C207010E011C013C013802780C7BF07C00F000F000F000F0007000700170 023004183807C010147E9315>I<00007C0000CE00019E00039E00030C00070000070000 0700000700000E00000E00000E0000FFF0000E00000E00001C00001C00001C00001C0000 1C0000380000380000380000380000380000700000700000700000700000700000E00000 E00000E00000E00000C00001C000318000798000F300006200003C000017297E9F16>I< 001E3000713800E0F001C0700380700780700700E00F00E00F00E00F00E01E01C01E01C0 1E01C01E01C01E03801E03800E07800E0B8006170001E700000700000700000E00000E00 300E00781C00F038006070003FC000151D809316>I<01E0000FE00001C00001C00001C0 0001C000038000038000038000038000070000070000071F000761800E80C00F00C00E00 E00E00E01C01C01C01C01C01C01C01C0380380380380380380380704700708700E08700E 10700610E006206003C016207E9F1A>I<00E001E001E000C00000000000000000000000 0000000E00130023804380438043808700070007000E000E001C001C001C203840384038 40388019000E000B1F7E9E10>I<0000C00001E00001E00001C000000000000000000000 0000000000000000000000001E0000630000438000838001038001038002070000070000 0700000700000E00000E00000E00000E00001C00001C00001C00001C0000380000380000 380000380000700000700030700078E000F1C0006380003E00001328819E13>I<01E000 0FE00001C00001C00001C00001C0000380000380000380000380000700000700000701E0 0706100E08700E10F00E20F00E40601C80001D00001E00001FC000387000383800383800 381C20703840703840703840701880E01880600F0014207E9F18>I<1E07C07C00231861 860023A032030043C0340300438038038043803803808700700700070070070007007007 0007007007000E00E00E000E00E00E000E00E00E000E00E01C101C01C01C201C01C03820 1C01C038401C01C0184038038018801801800F0024147E9328>109 D<1E07802318C023A06043C0704380704380708700E00700E00700E00700E00E01C00E01 C00E01C00E03821C03841C07041C07081C03083803101801E017147E931B>I<03C1E004 621804741C08781C08701E08701E10E01E00E01E00E01E00E01E01C03C01C03C01C03C01 C0380380780380700380E003C1C0072380071E000700000700000E00000E00000E00000E 00001C00001C0000FFC000171D819317>112 D<00F0400388C00705800E03801C03803C 0380380700780700780700780700F00E00F00E00F00E00F00E00F01C00F01C00703C0070 5C0030B8000F380000380000380000700000700000700000700000E00000E0000FFE0012 1D7E9314>I<1E1E0023210023C38043C780438780438300870000070000070000070000 0E00000E00000E00000E00001C00001C00001C00001C000038000018000011147E9315> I<007C018203010603060706060E00078007F803FC01FE001F00077007F006F006E00440 0820301FC010147E9315>I<00C000E001C001C001C001C003800380FFF8038007000700 070007000E000E000E000E001C001C001C001C10382038203820384018800F000D1C7F9B 10>I<0F006060118070F02180E0F821C0E07841C0E0384380E0188381C0100701C01007 01C0100701C0100E0380200E0380200E0380200E0380400E0380400E0380800E07808006 0781000709860001F078001D147E9321>119 D<03C1C00C62201034701038F02038F020 386040700000700000700000700000E00000E00000E00000E02061C040F1C040F1C080E2 C080446300383C0014147E931A>I<0F00601180702180E021C0E041C0E04380E08381C0 0701C00701C00701C00E03800E03800E03800E03800E07000C07000C07000E0F00061E00 03EE00000E00000E00001C0078180078380070700060600021C0001F0000141D7E9316> I<01E02003F04007F8C00C1F8008010000020000040000080000100000600000C0000100 000200000400800801001003003F060061FC0040F80080700013147E9315>I E /Fp 84 124 df<001F800000F0F00001C0380007801E000F000F000E0007001E000780 3C0003C03C0003C07C0003E07C0003E0780001E0F80001F0F84021F0F84021F0F87FE1F0 F87FE1F0F87FE1F0F84021F0F84021F0F80001F0780001E0780001E07C0003E03C0003C0 3C0003C01E0007800E0007000F000F0007801E0001C0380000F0F000001F80001C217D9F 23>2 D<003FC00000E0700003801C0007000E000F000F001E0007803E0007C03C0003C0 7C0003E07C0003E07C0003E07C0003E07C0003E07C0003E07C0003E03C0003C03E0007C0 1E0007801E0007800E0007000F000F0007000E0003000C0003801C000180180081801810 8080101040C03020404020207FC03FE03FC03FC03FC03FC01C207E9F21>10 D<001F83E000F06E3001C078780380F8780300F030070070000700700007007000070070 00070070000700700007007000FFFFFF8007007000070070000700700007007000070070 000700700007007000070070000700700007007000070070000700700007007000070070 00070070000700700007007000070070007FE3FF001D20809F1B>I<003F0000E0C001C0 C00381E00701E00701E0070000070000070000070000070000070000FFFFE00700E00700 E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700 E00700E00700E00700E00700E07FC3FE1720809F19>I<003FE000E0E001C1E00381E007 00E00700E00700E00700E00700E00700E00700E00700E0FFFFE00700E00700E00700E007 00E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E007 00E00700E00700E07FE7FE1720809F19>I<001F81F80000F04F040001C07C06000380F8 0F000300F00F000700F00F00070070000007007000000700700000070070000007007000 000700700000FFFFFFFF0007007007000700700700070070070007007007000700700700 070070070007007007000700700700070070070007007007000700700700070070070007 00700700070070070007007007000700700700070070070007007007007FE3FE3FF02420 809F26>I22 D<3E004100808080808080808041003E00090874A022> I<7038F87CFC7EFC7E743A0402040204020804080410081008201040200F0E7E9F17>34 D<70F8FCFC74040404080810102040060E7C9F0D>39 D<0020004000800100020006000C 000C00180018003000300030007000600060006000E000E000E000E000E000E000E000E0 00E000E000E000E0006000600060007000300030003000180018000C000C000600020001 000080004000200B2E7DA112>I<800040002000100008000C0006000600030003000180 0180018001C000C000C000C000E000E000E000E000E000E000E000E000E000E000E000E0 00C000C000C001C001800180018003000300060006000C00080010002000400080000B2E 7DA112>I<00060000000600000006000000060000000600000006000000060000000600 0000060000000600000006000000060000000600000006000000060000FFFFFFF0FFFFFF F00006000000060000000600000006000000060000000600000006000000060000000600 000006000000060000000600000006000000060000000600001C207D9A23>43 D<70F8FCFC74040404080810102040060E7C840D>II<70F8F8F8 7005057C840D>I<00030003000700060006000E000C000C001C00180018003800300030 00700060006000E000C000C001C00180018001800380030003000700060006000E000C00 0C001C0018001800380030003000700060006000E000C000C000102D7DA117>I<03F000 0E1C001C0E00180600380700700380700380700380700380F003C0F003C0F003C0F003C0 F003C0F003C0F003C0F003C0F003C0F003C0F003C0F003C0F003C0700380700380700380 7807803807001806001C0E000E1C0003F000121F7E9D17>I<018003800F80F380038003 800380038003800380038003800380038003800380038003800380038003800380038003 80038003800380038007C0FFFE0F1E7C9D17>I<03F0000C1C00100E0020070040078080 0780F007C0F803C0F803C0F803C02007C00007C0000780000780000F00000E00001C0000 380000700000600000C0000180000300000600400C00401800401000803FFF807FFF80FF FF80121E7E9D17>I<03F0000C1C00100E00200F00780F80780780780780380F80000F80 000F00000F00000E00001C0000380003F000003C00000E00000F000007800007800007C0 2007C0F807C0F807C0F807C0F00780400780400F00200E001C3C0003F000121F7E9D17> I<000600000600000E00000E00001E00002E00002E00004E00008E00008E00010E00020E 00020E00040E00080E00080E00100E00200E00200E00400E00C00E00FFFFF0000E00000E 00000E00000E00000E00000E00000E0000FFE0141E7F9D17>I<1803001FFE001FFC001F F8001FE00010000010000010000010000010000010000011F000161C00180E0010070010 07800003800003800003C00003C00003C07003C0F003C0F003C0E0038040038040070020 0600100E000C380003E000121F7E9D17>I<007C000182000701000E03800C07801C0780 380300380000780000700000700000F1F000F21C00F40600F80700F80380F80380F003C0 F003C0F003C0F003C0F003C07003C07003C07003803803803807001807000C0E00061C00 01F000121F7E9D17>I<4000007FFFC07FFF807FFF804001008002008002008004000008 0000080000100000200000200000400000400000C00000C00001C0000180000380000380 00038000038000078000078000078000078000078000078000078000030000121F7D9D17 >I<03F0000C0C001006003003002001806001806001806001807001807803003E03003F 06001FC8000FF00003F80007FC000C7E00103F00300F806003804001C0C001C0C000C0C0 00C0C000C0C000806001802001001002000C0C0003F000121F7E9D17>I<03F0000E1800 1C0C00380600380700700700700380F00380F00380F003C0F003C0F003C0F003C0F003C0 7007C07007C03807C0180BC00E13C003E3C0000380000380000380000700300700780600 780E00700C002018001070000FC000121F7E9D17>I<70F8F8F870000000000000000000 0070F8F8F87005147C930D>I<7FFFFFE0FFFFFFF0000000000000000000000000000000 0000000000000000000000000000000000FFFFFFF07FFFFFE01C0C7D9023>61 D<000100000003800000038000000380000007C0000007C0000007C0000009E0000009E0 000009E0000010F0000010F0000010F00000207800002078000020780000403C0000403C 0000403C0000801E0000801E0000FFFE0001000F0001000F0001000F0002000780020007 8002000780040003C00E0003C01F0007E0FFC03FFE1F207F9F22>65 DI<000FC040007030C001C009C0 038005C0070003C00E0001C01E0000C01C0000C03C0000C07C0000407C00004078000040 F8000000F8000000F8000000F8000000F8000000F8000000F8000000F8000000F8000000 780000007C0000407C0000403C0000401C0000401E0000800E0000800700010003800200 01C0040000703800000FC0001A217D9F21>IIII<000FE0200078186000E004E0038002E0070001E0 0F0000E01E0000601E0000603C0000603C0000207C00002078000020F8000000F8000000 F8000000F8000000F8000000F8000000F8000000F8007FFCF80003E0780001E07C0001E0 3C0001E03C0001E01E0001E01E0001E00F0001E0070001E0038002E000E0046000781820 000FE0001E217D9F24>III<0FFFC0007C 00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C 00003C00003C00003C00003C00003C00003C00003C00003C00003C00203C00F83C00F83C 00F83C00F0380040780040700030E0000F800012207E9E17>IIIII<001F800000F0F00001C0380007801E000F000F000E0007001E00 07803C0003C03C0003C07C0003E0780001E0780001E0F80001F0F80001F0F80001F0F800 01F0F80001F0F80001F0F80001F0F80001F0F80001F0780001E07C0003E07C0003E03C00 03C03C0003C01E0007800E0007000F000F0007801E0001C0380000F0F000001F80001C21 7D9F23>II82 D<07E0800C198010078030038060018060 0180E00180E00080E00080E00080F00000F000007800007F00003FF0001FFC000FFE0003 FF00001F800007800003C00003C00001C08001C08001C08001C08001C0C00180C00380E0 0300F00600CE0C0081F80012217D9F19>I<7FFFFFE0780F01E0600F0060400F0020400F 0020C00F0030800F0010800F0010800F0010800F0010000F0000000F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F 0000000F0000000F0000000F0000000F0000000F0000000F0000001F800007FFFE001C1F 7E9E21>IIII<7FF83FF80FE00FC007C0070003C0020001E0040001F00C0000F008000078 1000007C1000003C2000003E4000001E4000000F8000000F8000000780000003C0000007 E0000005E0000009F0000018F8000010780000207C0000603C0000401E0000801F000180 0F0001000780020007C0070003C01F8007E0FFE01FFE1F1F7F9E22>II<7FFFF87C00F87000F06001E04001E0C003C0C003 C0800780800F80800F00001E00001E00003C00003C0000780000F80000F00001E00001E0 0003C00403C0040780040F80040F000C1E000C1E00083C00183C0018780038F801F8FFFF F8161F7D9E1C>II<080410082010201040204020 804080408040B85CFC7EFC7E7C3E381C0F0E7B9F17>II<1FE000303000781800781C00300E00000E00000E00000E0000FE00078E001E0E00 380E00780E00F00E10F00E10F00E10F01E10781E103867200F83C014147E9317>97 D<0E0000FE00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00 000E3E000EC3800F01C00F00E00E00E00E00700E00700E00780E00780E00780E00780E00 780E00780E00700E00700E00E00F00E00D01C00CC300083E0015207F9F19>I<03F80E0C 1C1E381E380C70007000F000F000F000F000F000F00070007000380138011C020E0C03F0 10147E9314>I<000380003F800003800003800003800003800003800003800003800003 8000038000038003E380061B801C0780380380380380700380700380F00380F00380F003 80F00380F00380F003807003807003803803803807801C07800E1B8003E3F815207E9F19 >I<03F0000E1C001C0E00380700380700700700700380F00380F00380FFFF80F00000F0 0000F000007000007000003800801800800C010007060001F80011147F9314>I<007C00 C6018F038F07060700070007000700070007000700FFF007000700070007000700070007 00070007000700070007000700070007000700070007007FF01020809F0E>I<0000E003 E3300E3C301C1C30380E00780F00780F00780F00780F00780F00380E001C1C001E380033 E0002000002000003000003000003FFE001FFF800FFFC03001E0600070C00030C00030C0 0030C000306000603000C01C038003FC00141F7F9417>I<0E0000FE00000E00000E0000 0E00000E00000E00000E00000E00000E00000E00000E00000E3E000E43000E81800F01C0 0F01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C0 0E01C00E01C00E01C0FFE7FC16207F9F19>I<1C001E003E001E001C0000000000000000 00000000000E007E000E000E000E000E000E000E000E000E000E000E000E000E000E000E 000E000E000E00FFC00A1F809E0C>I<00E001F001F001F000E000000000000000000000 0000007007F000F000700070007000700070007000700070007000700070007000700070 00700070007000700070007000706070F060F0C061803F000C28829E0E>I<0E0000FE00 000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E0FF00E03 C00E03000E02000E04000E08000E10000E30000E70000EF8000F38000E1C000E1E000E0E 000E07000E07800E03800E03C00E03E0FFCFF815207F9F18>I<0E00FE000E000E000E00 0E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E00 0E000E000E000E000E000E000E000E00FFE00B20809F0C>I<0E1F01F000FE618618000E 81C81C000F00F00E000F00F00E000E00E00E000E00E00E000E00E00E000E00E00E000E00 E00E000E00E00E000E00E00E000E00E00E000E00E00E000E00E00E000E00E00E000E00E0 0E000E00E00E000E00E00E00FFE7FE7FE023147F9326>I<0E3E00FE43000E81800F01C0 0F01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C0 0E01C00E01C00E01C0FFE7FC16147F9319>I<01F800070E001C03803801C03801C07000 E07000E0F000F0F000F0F000F0F000F0F000F0F000F07000E07000E03801C03801C01C03 80070E0001F80014147F9317>I<0E3E00FEC3800F01C00F00E00E00E00E00F00E00700E 00780E00780E00780E00780E00780E00780E00700E00F00E00E00F01E00F01C00EC3000E 3E000E00000E00000E00000E00000E00000E00000E00000E0000FFE000151D7F9319>I< 03E0800619801C05803C0780380380780380700380F00380F00380F00380F00380F00380 F003807003807803803803803807801C0B800E138003E380000380000380000380000380 000380000380000380000380003FF8151D7E9318>I<0E78FE8C0F1E0F1E0F0C0E000E00 0E000E000E000E000E000E000E000E000E000E000E000E00FFE00F147F9312>I<1F9030 704030C010C010C010E00078007F803FE00FF00070803880188018C018C018E030D0608F 800D147E9312>I<020002000200060006000E000E003E00FFF80E000E000E000E000E00 0E000E000E000E000E000E000E080E080E080E080E080610031001E00D1C7F9B12>I<0E 01C0FE1FC00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E01C00E 01C00E01C00E01C00E01C00E03C00603C0030DC001F1FC16147F9319>III<7FC3FC0F01E00701C007018003810001C20000E40000EC00007800003800003C 00007C00004E000087000107000303800201C00601E01E01E0FF07FE1714809318>II<3FFF380E200E201C40384078407000 E001E001C00380078007010E011E011C0338027006700EFFFE10147F9314>II E /Fq 33 122 df<0001FF0000001FFFC000007F80F00000FE00F80003FC 01FC0003F803FC0007F003FC0007F003FC0007F003FC0007F001F80007F000F00007F000 000007F000000007F000000007F0000000FFFFFFFC00FFFFFFFC00FFFFFFFC0007F001FC 0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC00 07F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007 F001FC0007F001FC0007F001FC0007F001FC0007F001FC0007F001FC007FFF1FFFC07FFF 1FFFC07FFF1FFFC0222A7FA926>12 D45 D<000E00001E00007E0007FE00FFFE00FFFE00F8FE0000FE0000FE0000FE00 00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00 00FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE0000FE00 00FE0000FE007FFFFE7FFFFE7FFFFE17277BA622>49 D<00FF800003FFF0000FFFFC003F 03FF007C00FF807C007FC0FE007FC0FF003FE0FF003FE0FF003FE0FF001FE07E001FE03C 003FE000003FE000003FC000003FC000007F8000007F800000FF000001FE000001FC0000 03F0000007E000000FC000001F0000003E0000007C00E0007800E000F000E001E001C003 8001C0070001C00FFFFFC01FFFFFC03FFFFFC07FFFFFC0FFFFFF80FFFFFF80FFFFFF801B 277DA622>I<007F800003FFF00007FFFC001F81FE001F00FF003F80FF003F807F803FC0 7F803F807F803F807F801F007F800000FF800000FF000000FF000001FE000003F8000007 F00000FFC00000FFF0000001FC000000FF0000007F8000007FC000003FC000003FE00000 3FE000003FE03C003FE07E003FE0FF003FE0FF003FE0FF003FC0FF007FC0FE007F807C00 FF803F01FF001FFFFC0007FFF00000FF80001B277DA622>I<00000E0000001E0000003E 0000007E000000FE000000FE000001FE000003FE0000077E00000E7E00000E7E00001C7E 0000387E0000707E0000E07E0000E07E0001C07E0003807E0007007E000E007E000E007E 001C007E0038007E0070007E00E0007E00FFFFFFF8FFFFFFF8FFFFFFF80000FE000000FE 000000FE000000FE000000FE000000FE000000FE000000FE00007FFFF8007FFFF8007FFF F81D277EA622>I<0C0003000F803F000FFFFE000FFFFE000FFFFC000FFFF8000FFFE000 0FFFC0000FFE00000E0000000E0000000E0000000E0000000E0000000E0000000E7FC000 0FFFF8000F80FE000E007F000C003F8000003F8000001FC000001FC000001FE000001FE0 18001FE07E001FE0FE001FE0FE001FE0FE001FE0FE001FE0FE001FC078003FC078003F80 3C007F001F01FE000FFFFC0003FFF00000FF80001B277DA622>I<0007F000003FFC0000 FFFF0001FC0F0007F01F800FE03F800FC03F801FC03F803F803F803F801F007F8000007F 0000007F0000007F000000FF000000FF0FC000FF3FF800FF70FE00FFE03F00FFC03F80FF 801FC0FF801FC0FF801FC0FF001FE0FF001FE0FF001FE0FF001FE07F001FE07F001FE07F 001FE07F001FE03F801FC03F801FC01F803F800FC03F8007E0FF0003FFFC0000FFF00000 3FC0001B277DA622>I<000003800000000007C00000000007C0000000000FE000000000 0FE0000000000FE0000000001FF0000000001FF0000000003FF8000000003FF800000000 3FF80000000073FC0000000073FC00000000F3FE00000000E1FE00000000E1FE00000001 C0FF00000001C0FF00000003C0FF80000003807F80000007807FC0000007003FC0000007 003FC000000E003FE000000E001FE000001E001FF000001C000FF000001FFFFFF000003F FFFFF800003FFFFFF80000780007FC0000700003FC0000700003FC0000E00001FE0000E0 0001FE0001E00001FF0001C00000FF0001C00000FF00FFFE001FFFFEFFFE001FFFFEFFFE 001FFFFE2F297EA834>65 D<00003FF001800003FFFE0780000FFFFF8F80003FF007FF80 00FF8001FF8001FE00007F8007FC00003F8007F800001F800FF000000F801FE000000F80 3FE0000007803FC0000007807FC0000003807FC0000003807FC000000380FF8000000000 FF8000000000FF8000000000FF8000000000FF8000000000FF8000000000FF8000000000 FF8000000000FF8000000000FF8000000000FF80000000007FC0000000007FC000000380 7FC0000003803FC0000003803FE0000003801FE0000007800FF00000070007F800000F00 07FC00001E0001FE00003C0000FF8000F800003FF007F000000FFFFFC0000003FFFF0000 00003FF8000029297CA832>67 D73 D77 D82 D<7FFFFFFFFFC07FFFFFFFFFC07FFFFFFFFFC07F803F C03FC07E003FC007C078003FC003C078003FC003C070003FC001C0F0003FC001E0F0003F C001E0E0003FC000E0E0003FC000E0E0003FC000E0E0003FC000E0E0003FC000E000003F C0000000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F C0000000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F C0000000003FC0000000003FC0000000003FC0000000003FC0000000003FC0000000003F C0000000003FC0000000003FC0000000003FC00000007FFFFFE000007FFFFFE000007FFF FFE0002B287EA730>84 D<01FF800007FFF0000F81FC001FC0FE001FC07F001FC07F001F C03F800F803F8000003F8000003F8000003F80000FFF8000FFFF8007FC3F801FE03F803F 803F807F803F807F003F80FE003F80FE003F80FE003F80FE007F80FF007F807F00FFC03F 83DFFC0FFF0FFC01FC03FC1E1B7E9A21>97 D<001FF80000FFFE0003F01F000FE03F801F C03F803F803F803F803F807F801F007F000000FF000000FF000000FF000000FF000000FF 000000FF000000FF000000FF000000FF0000007F0000007F8000003F8001C03FC001C01F C003C00FE0078003F01F0000FFFC00001FE0001A1B7E9A1F>99 D<00003FF80000003FF8 0000003FF800000003F800000003F800000003F800000003F800000003F800000003F800 000003F800000003F800000003F800000003F800000003F800000003F800001FE3F80000 FFFBF80003F03FF8000FE00FF8001FC007F8003F8003F8003F8003F8007F8003F8007F00 03F800FF0003F800FF0003F800FF0003F800FF0003F800FF0003F800FF0003F800FF0003 F800FF0003F800FF0003F8007F0003F8007F0003F8003F8003F8003F8007F8001FC00FF8 000FE01FF80003F03FFF8000FFF3FF80003FC3FF80212A7EA926>I<003FE00001FFF800 03F07E000FE03F001FC01F803F800FC03F800FC07F000FC07F0007E0FF0007E0FF0007E0 FF0007E0FFFFFFE0FFFFFFE0FF000000FF000000FF000000FF0000007F0000007F800000 3F8000E03F8001E01FC001C00FE003C003F81F8000FFFE00001FF0001B1B7E9A20>I<00 07F0003FFC00FE3E01FC7F03F87F03F87F07F07F07F03E07F00007F00007F00007F00007 F00007F00007F000FFFFC0FFFFC0FFFFC007F00007F00007F00007F00007F00007F00007 F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007F00007 F00007F00007F0007FFF807FFF807FFF80182A7EA915>I104 D<07001FC01FE03FE03F E03FE01FE01FC007000000000000000000000000000000FFE0FFE0FFE00FE00FE00FE00F E00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE00FE0FF FEFFFEFFFE0F2B7DAA14>I108 DII<003FE00001FFFC0003F07E000FC01F801F800FC03F 800FE03F0007E07F0007F07F0007F07F0007F0FF0007F8FF0007F8FF0007F8FF0007F8FF 0007F8FF0007F8FF0007F8FF0007F87F0007F07F0007F03F800FE03F800FE01F800FC00F C01F8007F07F0001FFFC00003FE0001D1B7E9A22>II114 D<03FE300FFFF03E03F078 00F07000F0F00070F00070F80070FC0000FFE000FFFE007FFFC03FFFE01FFFF007FFF800 FFFC0003FC0000FCE0007CE0003CF0003CF0003CF80078FC0078FF01F0F7FFC0C1FF0016 1B7E9A1B>I<00700000700000700000700000F00000F00000F00001F00003F00003F000 07F0001FFFF0FFFFF0FFFFF007F00007F00007F00007F00007F00007F00007F00007F000 07F00007F00007F00007F00007F00007F03807F03807F03807F03807F03807F03807F038 03F87001F8F000FFE0001F8015267FA51B>III120 DI E /Fr 1 51 df<1F0060C06060F070F030603000700070006000C001C0018002000400 0810101020207FE0FFE00C137E9211>50 D E /Fs 11 121 df45 D<03CC063C0C3C181C3838303870387038E070E070E070E070E0E2C0E2C0E261E4 62643C380F127B9115>97 D<01F007080C08181C3838300070007000E000E000E000E000 E000E008E010602030C01F000E127B9113>99 D<01E007100C1018083810701070607F80 E000E000E000E000E000E0086010602030C01F000D127B9113>101 D<3C1E0780266318C04683A0E04703C0E08E0380E08E0380E00E0380E00E0380E01C0701 C01C0701C01C0701C01C070380380E0388380E0388380E0708380E0710701C0320300C01 C01D127C9122>109 D<01E007180C0C180C380C300E700E700EE01CE01CE01CE018E038 E030E06060C031801E000F127B9115>111 D<3C3C26C2468747078E068E000E000E001C 001C001C001C0038003800380038007000300010127C9112>114 D<01F006080C080C1C18181C001F001FC00FF007F0007800386030E030C030806060C01F 000E127D9111>I<00C001C001C001C00380038003800380FFE00700070007000E000E00 0E000E001C001C001C001C00384038403840388019000E000B1A7D990E>I<1E06270E47 0E4706870287020E020E021C041C041C041C0818083808181018200C4007800F127C9113 >118 D<070E0019910010E38020E38041C30041C00001C00001C0000380000380000380 00038000070200670200E70400CB04008B080070F00011127D9113>120 D E /Ft 10 112 df<60F0F06004047C830C>58 D<60F0F0701010101020204080040C7C 830C>I<00030003000700060006000E000C001C00180018003800300030007000600060 00E000C000C001C001800380030003000700060006000E000C000C001C00180018003800 3000700060006000E000C000C00010297E9E15>61 D<01FC00FF80001C001C00002E0018 00002E001000002E00100000270010000047002000004300200000438020000043802000 0081C040000081C040000081C040000080E040000100E080000100708000010070800001 0070800002003900000200390000020039000002001D000004001E000004000E00000400 0E00000C000E00001C00040000FF80040000211C7E9B21>78 D<01FFFF00003C03C00038 00E0003800F00038007000380070007000F0007000F0007000F0007000E000E001E000E0 03C000E0078000E01E0001FFF00001C0000001C0000001C0000003800000038000000380 000003800000070000000700000007000000070000000F000000FFE000001C1C7E9B1B> 80 D<000FC100303300400F008006018006030006030006060004060004070000070000 07800003F00001FF0000FFC0003FE00003E00000F0000070000030000030200030200030 6000606000606000C0600080F00300CC060083F800181E7E9C19>83 D<01F007080C0818043808300870307FC0E000E000E000E000E000E0046008601030600F 800E127E9113>101 D<0FC00001C00001C0000380000380000380000380000700000700 000700000700000E07000E18800E21C00E23C01C47801C83001D00001E00003F800039C0 0038E00038E00070E10070E10070E10070E200E06200603C00121D7E9C16>107 D<381F004E61804681C04701C08F01C08E01C00E01C00E01C01C03801C03801C03801C07 00380710380710380E10380E2070064030038014127E9119>110 D<00F800030C000E06001C0300180300300300700380700380E00700E00700E00700E00E 00E00E00E01C0060180060300030E0000F800011127E9114>I E /Fu 6 104 df0 D<07C000201FE000203FF80020783C 0060E01F00E0C00783C08003FF808000FF0080007C000000000000000000000000000000 000000000000000000000000000000000000FFFFFFE0FFFFFFE01B137E9220>39 D<0000600000600000E00000C00001C0000180000380000300000700000600000600000E 00000C00001C0000180000380000300000700000600000E00000C00000C00001C0000180 000380000300000700000600000E00000C00000C00001C00001800003800003000007000 00600000E00000C00000C0000013287A9D00>54 D<0001FFFF000FFFFF0038E00E0041E0 0C01C1E0000381C0000301C0000603C0000003C000000380000003800000078000000700 0000070000000FFFC0000FFF00000E0000001C0000001C0000003C000000380000003800 00007000000070000030E0000070C00000FD800000FF0000003C000000201D7F9B1E>70 D<003C00E001C00180038003800380038003800380038003800380038003800380038003 0007001C00F0001C00070003000380038003800380038003800380038003800380038003 800380018001C000E0003C0E297D9E15>102 DI E /Fv 43 122 df<003F07E00001C09C18000380F018000701F03C000E01E03C000E00 E018000E00E000000E00E000000E00E000000E00E000000E00E00000FFFFFFFC000E00E0 1C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C 000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C000E00E01C00 0E00E01C007FC7FCFF80211D809C23>14 D<004000800100020006000C000C0018001800 300030007000600060006000E000E000E000E000E000E000E000E000E000E000E000E000 600060006000700030003000180018000C000C00060002000100008000400A2A7D9E10> 40 D<800040002000100018000C000C000600060003000300038001800180018001C001 C001C001C001C001C001C001C001C001C001C001C0018001800180038003000300060006 000C000C00180010002000400080000A2A7E9E10>I<60F0F0701010101020204080040C 7C830C>44 DI<60F0F06004047C830C>I<03C00C301818300C30 0C700E60066006E007E007E007E007E007E007E007E007E007E007E007E007E007600660 06700E300C300C18180C3007E0101D7E9B15>48 D<030007003F00C70007000700070007 000700070007000700070007000700070007000700070007000700070007000700070007 000F80FFF80D1C7C9B15>I<07C01830201C400C400EF00FF80FF807F8077007000F000E 000E001C001C00380070006000C00180030006010C01180110023FFE7FFEFFFE101C7E9B 15>I<4000007FFF807FFF007FFF00400200800400800400800800001000001000002000 00600000400000C00000C00001C000018000018000038000038000038000038000078000 078000078000078000078000078000030000111D7E9B15>55 D<7FFFFFC0FFFFFFE00000 000000000000000000000000000000000000000000000000000000000000FFFFFFE07FFF FFC01B0C7E8F20>61 D66 D70 D<001F808000E0618001801980070007 800E0003801C0003801C00018038000180780000807800008070000080F0000000F00000 00F0000000F0000000F0000000F0000000F000FFF0F0000F807000078078000780780007 80380007801C0007801C0007800E00078007000B800180118000E06080001F80001C1E7E 9C21>I76 D78 D80 D<7FFFFFC0700F01C0600F00C0400F00 40400F0040C00F0020800F0020800F0020800F0020000F0000000F0000000F0000000F00 00000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F0000000F00 00000F0000000F0000000F0000000F0000001F800003FFFC001B1C7F9B1E>84 D87 D89 D<1FC000307000783800781C00301C 00001C00001C0001FC000F1C00381C00701C00601C00E01C40E01C40E01C40603C40304E 801F870012127E9115>97 DI<07E0 0C301878307870306000E000E000E000E000E000E00060007004300418080C3007C00E12 7E9112>I<003F0000070000070000070000070000070000070000070000070000070000 070003E7000C1700180F00300700700700600700E00700E00700E00700E00700E00700E0 0700600700700700300700180F000C370007C7E0131D7E9C17>I<03E00C301818300C70 0E6006E006FFFEE000E000E000E00060007002300218040C1803E00F127F9112>I<00F8 018C071E061E0E0C0E000E000E000E000E000E00FFE00E000E000E000E000E000E000E00 0E000E000E000E000E000E000E000E000E007FE00F1D809C0D>I<00038003C4C00C38C0 1C3880181800381C00381C00381C00381C001818001C38000C300013C000100000300000 1800001FF8001FFF001FFF803003806001C0C000C0C000C0C000C06001803003001C0E00 07F800121C7F9215>II<18003C00 3C0018000000000000000000000000000000FC001C001C001C001C001C001C001C001C00 1C001C001C001C001C001C001C001C00FF80091D7F9C0C>I107 DIII<03F0000E1C0018060030030070038060 0180E001C0E001C0E001C0E001C0E001C0E001C06001807003803003001806000E1C0003 F00012127F9115>II114 D<1F9030704030C010C010E010F8007F803FE00FF000F880388018C018C018E010D0608F C00D127F9110>I<04000400040004000C000C001C003C00FFE01C001C001C001C001C00 1C001C001C001C001C101C101C101C101C100C100E2003C00C1A7F9910>IIII<7F8FF00F03800F030007020003840001C80001D8 0000F00000700000780000F800009C00010E00020E000607000403801E07C0FF0FF81512 809116>II E /Fw 7 117 df<00038000000380000007C0 000007C0000007C000000FE000000FE000001FF000001BF000001BF0000031F8000031F8 000061FC000060FC0000E0FE0000C07E0000C07E0001803F0001FFFF0003FFFF8003001F 8003001F8006000FC006000FC00E000FE00C0007E0FFC07FFEFFC07FFE1F1C7E9B24>65 D<0FF8001C1E003E0F803E07803E07C01C07C00007C0007FC007E7C01F07C03C07C07C07 C0F807C0F807C0F807C0780BC03E13F80FE1F815127F9117>97 DI<03FC000E0E001C1F003C1F00781F00780E00F80000F800 00F80000F80000F80000F800007800007801803C01801C03000E0E0003F80011127E9115 >I114 D<1FD830786018E018E018F000FF807FE07FF01FF807FC007CC01CC01CE01CE018F830CF C00E127E9113>I<0300030003000300070007000F000F003FFCFFFC1F001F001F001F00 1F001F001F001F001F001F0C1F0C1F0C1F0C0F08079803F00E1A7F9913>I E /Fx 16 123 df<3078FCFC7830060676851A>46 D<003E0001FF8003FFC007C1E00F00 E01E0F703C3FF0387FF07070F870E07870E078E1C038E1C038E1C038E1C038E1C038E1C0 38E1C038E1C03870E07070E0707070E0387FE03C3FC01E0F000F003807C0F803FFF001FF E0003F00151E7E9D1A>64 D<1FF0003FFC007FFE00780F00300700000380000380007F80 07FF801FFF803F8380780380700380E00380E00380E00380700780780F803FFFFC1FFDFC 07F0FC16157D941A>97 D<00FF8003FFC00FFFE01F01E03C00C0780000700000700000E0 0000E00000E00000E00000E000007000007000007800703C00701F01F00FFFE003FFC000 FE0014157D941A>99 D<001FC0001FC0001FC00001C00001C00001C00001C00001C00001 C001F1C007FDC00FFFC01E0FC03C07C07803C07001C0E001C0E001C0E001C0E001C0E001 C0E001C0E001C07003C07003C03807C03E0FC01FFFFC07FDFC01F1FC161E7E9D1A>I<01 F80007FF000FFF801E07C03C01C07800E07000E0E00070E00070FFFFF0FFFFF0FFFFF0E0 00007000007000007800703C00701F01F00FFFE003FFC000FE0014157D941A>I<0007E0 001FF0003FF800787800F03000E00000E00000E00000E0007FFFF0FFFFF0FFFFF000E000 00E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E000 00E00000E0003FFF807FFFC03FFF80151E7F9D1A>I<01F87C07FFFE0FFFFE1E078C1C03 803801C03801C03801C03801C03801C01C03801E07801FFF001FFE0039F8003800003800 001C00001FFF801FFFE03FFFF878007C70001CE0000EE0000EE0000EE0000E70001C7800 3C3E00F81FFFF007FFC001FF0017217F941A>I<00C00001E00001E00000C00000000000 00000000000000000000000000007FE0007FE0007FE00000E00000E00000E00000E00000 E00000E00000E00000E00000E00000E00000E00000E00000E00000E00000E0007FFF80FF FFC07FFF80121F7C9E1A>105 D108 D<7CE0E000FFFBF8007FFFF8001F1F1C001E1E1C001E1E1C001C1C1C001C1C1C 001C1C1C001C1C1C001C1C1C001C1C1C001C1C1C001C1C1C001C1C1C001C1C1C001C1C1C 001C1C1C007F1F1F00FF9F9F807F1F1F00191580941A>II<01F00007FC001FFF003E0F803C07 807803C07001C0E000E0E000E0E000E0E000E0E000E0E000E0F001E07001C07803C03C07 803E0F801FFF0007FC0001F00013157D941A>I<07FB801FFF807FFF80780780E00380E0 0380E003807800007FC0003FFC0007FE00003F800007806001C0E001C0E001C0F003C0FC 0780FFFF00EFFE00E3F80012157C941A>115 D119 D<7FFFF0FFFFF0FFFFF0E001E0E003C0E0 0780000F00001E00003C0000780000F00001E00003C0000780000F00381E00383C003878 0038FFFFF8FFFFF8FFFFF815157E941A>122 D E /Fy 4 51 df0 D<020002000200C218F2783AE00F800F803AE0F278C2180200020002000D0E7E 8E12>3 D<060F0F0E1E1E1C3C383830707060E0C04008117F910A>48 D<00FF8003FF800F00001C0000380000700000600000600000E00000C00000FFFF80FFFF 80C00000E000006000006000007000003800001C00000F000003FF8000FF8011167D9218 >50 D E /Fz 39 123 df<70F8FCFC7404040404080810102040060F7C840E>44 D<70F8F8F87005057C840E>46 D<01F000071C000C06001803003803803803807001C070 01C07001C07001C0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F001E0F0 01E0F001E0F001E0F001E0F001E07001C07001C07001C07803C03803803803801C07000C 0600071C0001F00013227EA018>48 D<008003800F80F380038003800380038003800380 038003800380038003800380038003800380038003800380038003800380038003800380 03800380038007C0FFFE0F217CA018>I<03F0000C1C001007002007804003C04003C080 03E0F003E0F801E0F801E0F801E02003E00003E00003C00003C0000780000700000E0000 1C0000180000300000600000C0000180000100000200200400200800201800603000403F FFC07FFFC0FFFFC013217EA018>I<007E0001C1000300800601C00E03C01C03C0180180 380000380000780000700000700000F0F800F30C00F40600F40300F80380F801C0F001C0 F001E0F001E0F001E0F001E0F001E07001E07001E07001E03801C03801C01803801C0300 0C0600070C0001F00013227EA018>54 D<4000006000007FFFE07FFFC07FFFC0400080C0 010080010080020080020000040000080000080000100000300000200000600000600000 600000E00000C00000C00001C00001C00001C00001C00003C00003C00003C00003C00003 C00003C00003C00003C00001800013237DA118>I<01F800060E00080300100180200180 2000C06000C06000C06000C07000C07801803E01003F02001FC4000FF80003F80003FC00 067F00083F80100F803007C06001C06000E0C000E0C00060C00060C00060C00060600040 6000C03000801803000E0E0003F00013227EA018>I<01F000060C000C06001807003803 80700380700380F001C0F001C0F001C0F001E0F001E0F001E0F001E0F001E07001E07003 E03803E01805E00C05E00619E003E1E00001C00001C00001C00003800003803003007807 00780600700C002018001030000FC00013227EA018>I<00018000000180000001800000 03C0000003C0000003C0000005E0000005E000000DF0000008F0000008F0000010F80000 1078000010780000203C0000203C0000203C0000401E0000401E0000401E0000800F0000 800F0000FFFF000100078001000780030007C0020003C0020003C0040003E0040001E004 0001E00C0000F00C0000F03E0001F8FF800FFF20237EA225>65 D<0007E0100038183000 E0063001C00170038000F0070000F00E0000701E0000701C0000303C0000303C0000307C 0000107800001078000010F8000000F8000000F8000000F8000000F8000000F8000000F8 000000F800000078000000780000107C0000103C0000103C0000101C0000201E0000200E 000040070000400380008001C0010000E0020000381C000007E0001C247DA223>67 DI< FFFFFFC00F8007C0078001C0078000C00780004007800040078000600780002007800020 0780002007802020078020000780200007802000078060000780E00007FFE0000780E000 078060000780200007802000078020000780200007800000078000000780000007800000 07800000078000000780000007800000078000000FC00000FFFE00001B227EA120>70 D73 D77 D82 D<03F0200C0C601802603001E07000E0600060E00060E00060E00020E00020 E00020F00000F000007800007F00003FF0001FFE000FFF0003FF80003FC00007E00001E0 0000F00000F0000070800070800070800070800070C00060C00060E000C0F000C0C80180 C6070081FC0014247DA21B>I<7FFFFFF878078078600780184007800840078008400780 08C007800C80078004800780048007800480078004000780000007800000078000000780 000007800000078000000780000007800000078000000780000007800000078000000780 000007800000078000000780000007800000078000000780000007800000078000000FC0 0003FFFF001E227EA123>II87 D<0FE0001838003C0C003C0E0018070000070000 070000070000FF0007C7001E07003C0700780700700700F00708F00708F00708F00F0878 17083C23900FC1E015157E9418>97 D<01FE000703000C07801C07803803007800007000 00F00000F00000F00000F00000F00000F00000F000007000007800403800401C00800C01 0007060001F80012157E9416>99 D<0000E0000FE00001E00000E00000E00000E00000E0 0000E00000E00000E00000E00000E00000E00000E001F8E00704E00C02E01C01E03800E0 7800E07000E0F000E0F000E0F000E0F000E0F000E0F000E0F000E07000E07800E03800E0 1801E00C02E0070CF001F0FE17237EA21B>I<01FC000707000C03801C01C03801C07801 E07000E0F000E0FFFFE0F00000F00000F00000F00000F000007000007800203800201C00 400E008007030000FC0013157F9416>I<003C00C6018F038F030F070007000700070007 000700070007000700FFF807000700070007000700070007000700070007000700070007 000700070007000700070007807FF8102380A20F>I<00007001F198071E180E0E181C07 001C07003C07803C07803C07803C07801C07001C07000E0E000F1C0019F0001000001000 001800001800001FFE000FFFC00FFFE03800F0600030400018C00018C00018C000186000 306000303800E00E038003FE0015217F9518>I<0E0000FE00001E00000E00000E00000E 00000E00000E00000E00000E00000E00000E00000E00000E00000E1F800E60C00E80E00F 00700F00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E 00700E00700E00700E00700E0070FFE7FF18237FA21B>I<1C001E003E001E001C000000 00000000000000000000000000000E00FE001E000E000E000E000E000E000E000E000E00 0E000E000E000E000E000E000E000E000E00FFC00A227FA10E>I<0E00FE001E000E000E 000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E000E 000E000E000E000E000E000E000E000E000E000E000E00FFE00B237FA20E>108 D<0E1FC07F00FE60E183801E807201C00F003C00E00F003C00E00E003800E00E003800E0 0E003800E00E003800E00E003800E00E003800E00E003800E00E003800E00E003800E00E 003800E00E003800E00E003800E00E003800E00E003800E00E003800E0FFE3FF8FFE2715 7F942A>I<0E1F80FE60C01E80E00F00700F00700E00700E00700E00700E00700E00700E 00700E00700E00700E00700E00700E00700E00700E00700E00700E0070FFE7FF18157F94 1B>I<01FC000707000C01801800C03800E0700070700070F00078F00078F00078F00078 F00078F00078F000787000707800F03800E01C01C00E038007070001FC0015157F9418> I<0E1F00FE61C00E80600F00700E00380E003C0E001C0E001E0E001E0E001E0E001E0E00 1E0E001E0E001E0E003C0E003C0E00380F00700E80E00E41C00E3F000E00000E00000E00 000E00000E00000E00000E00000E00000E0000FFE000171F7F941B>I<0E3CFE461E8F0F 0F0F060F000E000E000E000E000E000E000E000E000E000E000E000E000E000F00FFF010 157F9413>114 D<0F8830786018C018C008C008E008F0007F803FE00FF001F8003C801C 800C800CC00CC008E018D0308FC00E157E9413>I<02000200020002000600060006000E 001E003E00FFF80E000E000E000E000E000E000E000E000E000E000E000E040E040E040E 040E040E040708030801F00E1F7F9E13>I<0E0070FE07F01E00F00E00700E00700E0070 0E00700E00700E00700E00700E00700E00700E00700E00700E00700E00700E00F00E00F0 06017003827800FC7F18157F941B>II<3FFFC0380380300780200700600E00401C00403C0040 380000700000E00001E00001C0000380400700400F00400E00C01C008038008078018070 0780FFFF8012157F9416>122 D E /FA 1 111 df<07C003F8000FF01FFE0018F83C1F00 3078600F80307CC00F80307D800780607F000780607E0007C0607C000780C0FC000F80C0 F8000F8000F8000F8000F8000F8001F0001F0001F0001F0001F0001F0001F0003E0003E0 003E0003E0003E0003E0007C0003E0007C0407C0007C0C07C000F80C07C000F80C07C000 F8180F8000F0180F8000F0300F8000F0600F800078E00F00007F800E00001F00261F7E9E 2B>110 D E /FB 19 121 df<0000030000000000030000000000030000000000078000 0000000780000000000FC0000000000FC0000000000FC00000000017E00000000013E000 00000013E00000000023F00000000021F00000000021F00000000040F80000000040F800 00000040F800000000807C00000000807C00000001807E00000001003E00000001003E00 000002003F00000002001F00000002001F00000004000F80000004000F80000004000F80 0000080007C00000080007C00000180007E000001FFFFFE000001FFFFFE00000200003F0 0000200001F00000200001F00000400001F80000400000F80000400000F800008000007C 00008000007C00008000007C00010000003E00010000003E00030000003F00030000001F 00070000001F001F8000003F80FFE00003FFFCFFE00003FFFC2E327EB132>65 D<00FE00000303C0000C00E00010007000100038003C003C003E001C003E001E003E001E 0008001E0000001E0000001E0000001E00000FFE0000FC1E0003E01E000F801E001F001E 003E001E003C001E007C001E00F8001E04F8001E04F8001E04F8003E04F8003E0478003E 047C005E043E008F080F0307F003FC03E01E1F7D9E21>97 D<003F8000E0600380180700 040F00041E001E1C003E3C003E7C003E7C0008780000F80000F80000F80000F80000F800 00F80000F80000F80000F800007800007C00007C00003C00011E00011E00020F00020700 0403801800E060003F80181F7D9E1D>99 D<0000006000000FE000003FE000003FE00000 03E0000001E0000001E0000001E0000001E0000001E0000001E0000001E0000001E00000 01E0000001E0000001E0000001E0000001E0000001E0001F81E000F061E001C019E00780 05E00F0003E00E0003E01E0001E03C0001E03C0001E07C0001E0780001E0F80001E0F800 01E0F80001E0F80001E0F80001E0F80001E0F80001E0F80001E0F80001E0780001E07800 01E03C0001E03C0001E01C0001E01E0003E00E0005E0070009E0038011F000E061FF003F 81FF20327DB125>I<003F800000E0E0000380380007003C000E001E001E001E001C000F 003C000F007C000F0078000F8078000780F8000780F8000780FFFFFF80F8000000F80000 00F8000000F8000000F8000000F8000000780000007C0000003C0000003C0000801E0000 800E0001000F0002000780020001C00C0000F03000001FC000191F7E9E1D>I<0007E000 1C1000383800707C00E07C01E07C01C03803C00003C00003C00003C00003C00003C00003 C00003C00003C00003C00003C00003C000FFFFC0FFFFC003C00003C00003C00003C00003 C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003 C00003C00003C00003C00003C00003C00003C00003C00003C00003C00007E0007FFF007F FF0016327FB114>I<000000F0007F030801C1C41C0380E81C070070080F0078001E003C 001E003C003E003E003E003E003E003E003E003E003E003E003E003E001E003C001E003C 000F007800070070000780E00009C1C000087F0000180000001800000018000000180000 00180000001C0000000E0000000FFFF80007FFFF0003FFFF800E000FC0180001E0300000 F070000070E0000038E0000038E0000038E0000038E00000387000007070000070380000 E01C0001C00700070001C01C00003FE0001E2F7E9F21>I<01800000003F80000000FF80 000000FF800000000F800000000780000000078000000007800000000780000000078000 000007800000000780000000078000000007800000000780000000078000000007800000 00078000000007800000000780FE00000783078000078C03C000079001E00007A001E000 07A000F00007C000F00007C000F000078000F000078000F000078000F000078000F00007 8000F000078000F000078000F000078000F000078000F000078000F000078000F0000780 00F000078000F000078000F000078000F000078000F000078000F000078000F000078000 F000078000F0000FC001F800FFFC1FFF80FFFC1FFF8021327EB125>I<07000F801F801F 800F8007000000000000000000000000000000000000000000000001801F80FF80FF800F 800780078007800780078007800780078007800780078007800780078007800780078007 80078007800780078007800FC0FFF8FFF80D307EAF12>I<01803F80FF80FF800F800780 078007800780078007800780078007800780078007800780078007800780078007800780 078007800780078007800780078007800780078007800780078007800780078007800780 078007800780078007800FC0FFFCFFFC0E327EB112>108 D<0180FE001FC0003F830780 60F000FF8C03C1807800FF9001E2003C000FA001E4003C0007A000F4001E0007C000F800 1E0007C000F8001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E 00078000F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E00 078000F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E0007 8000F0001E00078000F0001E00078000F0001E00078000F0001E00078000F0001E000780 00F0001E000FC001F8003F00FFFC1FFF83FFF0FFFC1FFF83FFF0341F7E9E38>I<0180FE 00003F83078000FF8C03C000FF9001E0000FA001E00007A000F00007C000F00007C000F0 00078000F000078000F000078000F000078000F000078000F000078000F000078000F000 078000F000078000F000078000F000078000F000078000F000078000F000078000F00007 8000F000078000F000078000F000078000F000078000F000078000F0000FC001F800FFFC 1FFF80FFFC1FFF80211F7E9E25>I<001FC00000F0780001C01C00070007000F0007801E 0003C01C0001C03C0001E03C0001E0780000F0780000F0780000F0F80000F8F80000F8F8 0000F8F80000F8F80000F8F80000F8F80000F8F80000F8780000F07C0001F03C0001E03C 0001E01E0003C01E0003C00F00078007800F0001C01C0000F07800001FC0001D1F7E9E21 >I<0181FC003F860700FF8803C0FF9001E00FA000F007C00078078000780780003C0780 003C0780003E0780001E0780001F0780001F0780001F0780001F0780001F0780001F0780 001F0780001F0780001F0780003E0780003E0780003C0780007C0780007807C000F007A0 00F007A001E00798038007860F000781F800078000000780000007800000078000000780 00000780000007800000078000000780000007800000078000000FC00000FFFC0000FFFC 0000202D7E9E25>I<0183E03F8C18FF907CFF907C0FA07C07C03807C00007C00007C000 078000078000078000078000078000078000078000078000078000078000078000078000 0780000780000780000780000780000780000780000FC000FFFE00FFFE00161F7E9E19> 114 D<01FC100E03301800F0300070600030E00030E00010E00010E00010F00010F80000 7E00003FF0001FFF000FFFC003FFE0003FF00001F80000F880003C80003C80001CC0001C C0001CE0001CE00018F00038F00030EC0060C301C080FE00161F7E9E1A>I<0040000040 0000400000400000400000C00000C00000C00001C00001C00003C00007C0000FC0001FFF E0FFFFE003C00003C00003C00003C00003C00003C00003C00003C00003C00003C00003C0 0003C00003C00003C00003C00003C00003C01003C01003C01003C01003C01003C01003C0 1003C01001C02001E02000E0400078C0001F00142C7FAB19>I118 D120 D E end %%EndProlog %%BeginSetup %%Feature: *Resolution 300dpi TeXDict begin %%EndSetup %%Page: 1 1 1 0 bop 299 494 a FB(A)21 b(threshold)g(of)h(ln)11 b FA(n)22 b FB(for)g(appro)n(ximating)e(set)i(co)n(v)n(er)860 620 y Fz(Uriel)15 b(F)l(eige)1091 602 y Fy(\003)414 678 y Fz(Departmen)o(t)g(of)i(Applied)e(Math)h(and)h(Computer)e(Science)714 736 y(The)h(W)l(eizmann)f(Institute)746 794 y(Reho)o(v)o(ot)g(76100,)j (Israel)622 852 y Fx(feige@wisdo)o(m.)o(wei)o(zma)o(nn)o(.ac)o(.il)o Fz(.)836 954 y(April)d(2,)h(1998)884 1161 y Fw(Abstract)251 1232 y Fv(Giv)o(en)c(a)h(collection)g Fu(F)k Fv(of)12 b(subsets)j(of)e Ft(S)h Fv(=)e Fu(f)p Fv(1)p Ft(;)7 b(:)g(:)g(:)t(;)g (n)p Fu(g)p Fv(,)12 b Fs(set)i(c)n(over)f Fv(is)g(the)h(problem)e(of)g (select-)189 1282 y(ing)h(as)h(few)h(as)f(p)q(ossible)g(subsets)i(from) c Fu(F)19 b Fv(suc)o(h)14 b(that)h(their)f(union)g(co)o(v)o(ers)h Ft(S)r Fv(,)f(and)g Fs(max)i Ft(k)q Fs(-c)n(over)189 1331 y Fv(is)c(the)i(problem)e(of)g(selecting)i Ft(k)f Fv(subsets)i(from)c Fu(F)17 b Fv(suc)o(h)d(that)f(their)g(union)g(has)g (maxim)n(um)8 b(cardi-)189 1381 y(nalit)o(y)m(.)19 b(Both)c(these)h (problems)e(are)h(NP-hard.)22 b(W)m(e)14 b(pro)o(v)o(e)h(that)g(\(1)10 b Fu(\000)g Ft(o)p Fv(\(1\)\))d(ln)g Ft(n)14 b Fv(is)h(a)g(threshold) 189 1431 y(b)q(elo)o(w)i(whic)o(h)g(set)i(co)o(v)o(er)f(cannot)g(b)q(e) g(appro)o(ximated)d(e\016cien)o(tly)m(,)j(unless)g(NP)g(has)g(sligh)o (tly)e(su-)189 1481 y(p)q(erp)q(olynomial)d(time)i(algorithms.)23 b(This)17 b(closes)g(the)g(gap)f(\(up)g(to)g(lo)o(w)g(order)h(terms\))f (b)q(et)o(w)o(een)189 1531 y(the)c(ratio)g(of)f(appro)o(ximation)f(ac)o (hiev)n(able)h(b)o(y)h(the)h(greedy)g(algorithm)c(\(whic)o(h)j(is)g (\(1)6 b Fu(\000)g Ft(o)p Fv(\(1\)\))h(ln)g Ft(n)p Fv(\),)189 1581 y(and)14 b(previous)i(results)g(of)e(Lund)h(and)g(Y)m(annak)n (akis,)e(that)i(sho)o(w)o(ed)h(hardness)g(of)e(appro)o(ximation)189 1630 y(within)i(a)h(ratio)g(of)g(\(log)583 1640 y Fr(2)608 1630 y Ft(n)p Fv(\))p Ft(=)p Fv(2)g Fu(')h Fv(0)p Ft(:)p Fv(72)7 b(ln)e Ft(n)p Fv(.)29 b(F)m(or)17 b(max)e Ft(k)q Fv(-co)o(v)o(er)j(w)o(e)g(sho)o(w)f(an)g(appro)o(ximation)189 1680 y(threshold)d(of)f(\(1)d Fu(\000)f Fv(1)p Ft(=e)p Fv(\))14 b(\(up)g(to)g(lo)o(w)f(order)h(terms\),)g(under)g(the)h (assumption)d(that)i Ft(P)j Fu(6)p Fv(=)12 b Ft(N)5 b(P)h Fv(.)75 1823 y Fq(1)69 b(In)n(tro)r(duction)75 1924 y Fp(Let)23 b Fo(S)i Fp(b)q(e)e(a)f(set)g(of)h Fo(n)f Fp(p)q(oin)o(ts)h (and)g Fn(F)29 b Fp(=)c Fn(f)p Fo(S)931 1931 y Fm(1)951 1924 y Fo(;)8 b(S)1000 1931 y Fm(2)1018 1924 y Fo(;)g(:)g(:)g(:)d(S) 1127 1931 y Fl(s)1145 1924 y Fn(g)23 b Fp(a)f(collection)i(of)e (subsets)h(of)f Fo(S)s Fp(.)41 b Fk(Set)75 1981 y(c)n(over)17 b Fp(is)h(the)g(problem)g(of)g(selecting)h(as)e(few)g(as)h(p)q(ossible) h(subsets)f(from)e Fn(F)22 b Fp(suc)o(h)c(that)f(ev)o(ery)g(p)q(oin)o (t)75 2037 y(in)j Fo(S)i Fp(is)e(con)o(tained)g(in)g(at)f(least)g(one)h (of)f(the)g(selected)i(subsets.)32 b Fk(Max)21 b Fo(k)q Fk(-c)n(over)e Fp(is)h(the)f(problem)h(of)75 2094 y(selecting)c Fo(k)f Fp(subsets)f(from)g Fn(F)k Fp(suc)o(h)c(that)g(their)g(union)i (con)o(tains)e(as)g(man)o(y)f(p)q(oin)o(ts)i(as)f(p)q(ossible.)21 b(Both)75 2150 y(these)16 b(problems)g(are)g(NP-hard.)21 b(A)16 b(common)f(approac)o(h)h(of)f(coping)i(with)f(NP-hard)f (problems)i(is)f(b)o(y)75 2206 y(appro)o(ximation)g(algorithms)f(that)g (run)h(in)h(p)q(olynomial)g(time)f(and)g(deliv)o(er)h(solutions)f(that) f(are)g(close)75 2263 y(to)e(optimal.)20 b(F)l(or)14 b(set)g(co)o(v)o(er,)f(w)o(e)h(ev)m(aluate)h(an)f(appro)o(ximation)g (algorithm)g(b)o(y)g(considering)h(the)f(ratio)75 2319 y(b)q(et)o(w)o(een)f(the)f(n)o(um)o(b)q(er)g(of)g(subsets)h(used)f(in)h (the)g(co)o(v)o(er)e(output)h(b)o(y)h(the)f(algorithm)g(and)h(the)f(n)o (um)o(b)q(er)g(of)75 2376 y(subsets)h(used)g(b)o(y)g(the)g(optimal)g (solution.)20 b(This)14 b(ratio)e(is)h(alw)o(a)o(ys)f(at)g(least)h (one,)g(and)g(the)g(largest)g(v)m(alue)p 75 2414 720 2 v 126 2441 a Fj(\003)144 2457 y Fi(Incum)o(b)q(en)o(t)h(of)f(the)g (Joseph)h(and)f(Celia)h(Reskin)h(Career)e(Dev)o(elopmen)o(t)i(Chair.) 964 2581 y Fp(1)p eop %%Page: 2 2 2 1 bop 75 311 a Fp(that)18 b(it)h(can)f(attain)h(on)f(an)h(input)g (instance)h(is)f(the)f(appro)o(ximation)h(ratio)f(of)g(the)h (algorithm.)30 b(F)l(or)75 368 y(max)15 b Fo(k)q Fp(-co)o(v)o(er,)g(w)o (e)g(consider)h(the)g(ratio)f(b)q(et)o(w)o(een)h(the)f(n)o(um)o(b)q(er) h(of)f(p)q(oin)o(ts)h(co)o(v)o(ered)f(b)o(y)h(the)f Fo(k)i Fp(subsets)75 424 y(selected)g(b)o(y)f(the)g(algorithm)g(and)g(the)g(n) o(um)o(b)q(er)h(of)e(p)q(oin)o(ts)h(co)o(v)o(ered)g(b)o(y)g(the)g (optimal)g(solution.)23 b(This)75 481 y(ratio)15 b(is)h(alw)o(a)o(ys)f (at)g(most)g(one,)h(and)f(the)h(smallest)g(v)m(alue)h(that)e(it)h(can)g (attain)f(on)h(an)f(input)i(instance)75 537 y(is)h(the)g(appro)o (ximation)f(ratio)g(of)g(the)h(algorithm.)27 b(\(Slighly)19 b(extending)f(the)g(class)g(of)f(algorithms)g(of)75 594 y(in)o(terest,)f(w)o(e)g(also)h(allo)o(w)f(for)g(randomized)h(p)q (olynomial)h(time)f(algorithms,)f(in)h(whic)o(h)h(case)e(w)o(e)g(w)o (an)o(t)75 650 y(the)i(solution)h(output)f(b)o(y)g(the)g(algorithm)g (to)g(b)q(e)h(close)f(to)g(optimal)g(with)h(high)g(probabilit)o(y)l(,)h (where)75 707 y(probabilit)o(y)15 b(is)f(computed)g(o)o(v)o(er)e(the)i (coin)g(tosses)f(of)g(the)h(randomized)g(algorithm.\))19 b(It)14 b(is)g(w)o(ell)g(kno)o(wn)75 763 y(that)19 b(set)g(co)o(v)o(er) g(can)h(b)q(e)h(appro)o(ximated)e(within)i(a)e(ratio)h(of)f(ln)8 b Fo(n)p Fp(,)21 b(where)f(ln)g(denotes)g(the)g(natural)75 819 y(logarithm,)e(and)g(that)f(max)g Fo(k)q Fp(-co)o(v)o(er)g(can)h(b) q(e)g(appro)o(ximated)f(within)i(a)f(ratio)f(of)g(1)11 b Fn(\000)i Fp(1)p Fo(=e)j Fn(')h Fp(0)p Fo(:)p Fp(632.)75 876 y(The)c(results)h(and)f(tec)o(hniques)h(in)g([1)o(,)f(28)o(])g (imply)h(that)e(there)h(is)h(a)e(constan)o(t)g Fo(\016)j(<)e Fp(1)g(suc)o(h)g(that)f(it)h(is)h(NP-)75 932 y(hard)g(to)g(appro)o (ximate)g(max)g Fo(k)q Fp(-co)o(v)o(er)g(within)i(a)e(ration)g(b)q (etter)h(than)f Fo(\016)r Fp(.)20 b(Lund)15 b(and)g(Y)l(annak)m(akis)g ([26)o(])75 989 y(sho)o(w)o(ed)k(\(under)h(a)f(complexit)o(y)h (assumption)g(that)f(will)i(b)q(e)f(presen)o(ted)g(in)g(Section)h (1.1\))d(that)h(it)g(is)75 1045 y(hard)d(to)f(appro)o(ximate)h(set)g (co)o(v)o(er)f(within)j(a)d(ratio)h(of)g(\(log)8 b Fo(n)p Fp(\))p Fo(=)p Fp(2,)15 b(where)h(log)h(denotes)f(logarithms)g(in)75 1102 y(base)i(2.)26 b(W)l(e)18 b(extend)g(these)g(hardness)g(results,)g (and)g(sho)o(w)f(that)f(for)h(an)o(y)h Fo(\017)f(>)f Fp(0,)i(set)f(co)o(v)o(er)g(cannot)75 1158 y(b)q(e)f(appro)o(ximated)f (within)i(a)e(ratio)g(of)f(\(1)c Fn(\000)h Fo(\017)p Fp(\))d(ln)g Fo(n)15 b Fp(unless)i(NP)e(has)g Fo(n)1316 1142 y Fl(O)q Fm(\(log)6 b(log)f Fl(n)p Fm(\))1498 1158 y Fp(-time)16 b(deterministic)75 1215 y(algorithms,)k(and)f(that)g(max) g Fo(k)q Fp(-co)o(v)o(er)f(cannot)h(b)q(e)h(appro)o(ximated)f(within)i (a)e(ratio)g(of)f(1)13 b Fn(\000)g Fp(1)p Fo(=e)f Fp(+)i Fo(\017)75 1271 y Fp(unless)20 b(P=NP)l(.)f(This)g(implies)i(that)d (kno)o(wn)h(appro)o(ximation)g(algorithms)g(for)f(these)h(problems)g (are)75 1328 y(essen)o(tially)h(b)q(est)e(p)q(ossible)i(in)f(terms)e (of)h(the)g(appro)o(ximation)g(ratios)f(that)h(they)g(guaran)o(tee.)27 b(In)19 b(all)75 1384 y(instances)j(of)e(set)h(co)o(v)o(er)f(and)h(max) f Fo(k)q Fp(-co)o(v)o(er)g(that)h(w)o(e)f(construct,)i Fo(s)f Fp(\(the)f(n)o(um)o(b)q(er)h(of)g(subsets\))f(is)75 1440 y(smaller)e(than)g Fo(n)f Fp(\(the)h(n)o(um)o(b)q(er)g(of)f(p)q (oin)o(ts\).)27 b(Our)18 b(results)f(are)h(based)g(on)f(a)g(reduction)i (from)e(a)g(new)75 1497 y(m)o(ulti-pro)o(v)o(er)12 b(pro)q(of)g(system) g(for)f(NP)h(\(see)g(Section)h(2\),)f(designed)h(sp)q(eci\014cally)i (for)d(this)g(purp)q(ose.)20 b(Our)75 1553 y(pro)q(of)15 b(tec)o(hnique)h(extends)g(that)f(of)f([26)o(].)75 1675 y Fh(1.1)56 b(Related)17 b(w)n(ork)75 1761 y Fp(Set)d(co)o(v)o(er)g(w)o (as)f(among)g(the)i(\014rst)e(problems)i(for)f(whic)o(h)h(appro)o (ximation)f(algorithms)g(w)o(ere)g(analysed.)75 1817 y(Johnson)i([23)o(])f(sho)o(w)o(ed)f(that)h(the)g(greedy)h(algorithm)f (giv)o(es)g(an)g(appro)o(ximation)h(ratio)e(of)h(ln)9 b Fo(n)p Fp(.)20 b(\(This)75 1874 y(w)o(as)14 b(extended)i(b)o(y)f(Ch)o (v)m(atal)g([7)o(])g(to)f(the)i(w)o(eigh)o(ted)f(v)o(ersion)g(of)g(set) f(co)o(v)o(er.\))19 b(Lo)o(v)m(asz)c([24)o(])g(sho)o(w)o(ed)g(that)75 1930 y(a)20 b(linear)i(programming)d(relaxation)i(appro)o(ximates)f (set)g(co)o(v)o(er)g(within)i(a)e(ratio)g(of)g(ln)8 b Fo(n)p Fp(.)36 b(In)21 b(b)q(oth)75 1987 y(cases,)d(the)f(authors)g(w)o (ere)g(in)o(terested)h(mainly)h(in)f(the)g(leading)h(term)e(of)g(the)g (appro)o(ximation)h(ratio.)75 2043 y(Analysis)e(of)e(the)g(lo)o(w)h (order)f(terms)g(of)g(the)h(appro)o(ximation)f(ratio)h(w)o(as)e(pro)o (vided)j(b)o(y)e(Sriniv)m(asan)i([34)o(])75 2100 y(\(for)g(the)g (linear)i(programming)e(approac)o(h\))g(and)h(b)o(y)g(Sla)o(vik)g([33)o (])f(\(for)g(the)h(greedy)g(algorithm\).)24 b(F)l(or)75 2156 y(max)13 b Fo(k)q Fp(-co)o(v)o(er,)h(the)g(greedy)g(algorithm)g (giv)o(es)g(an)f(appro)o(ximation)h(ratio)g(of)f(1)7 b Fn(\000)g Fp(1)p Fo(=e)14 b Fp(\(up)g(to)f(lo)o(w)h(order)75 2213 y(terms\).)19 b(See)d([20)o(])f(and)g(references)h(therein,)g(and) f(also)h(Prop)q(osition)f(11.)20 b(\(A)15 b(similar)h(appro)o(ximation) 75 2269 y(ratio)e(can)h(b)q(e)h(obtained)f(via)g(a)g(linear)h (programming)e(relaxation,)h(though)f(the)h(author)g(is)g(not)f(a)o(w)o (are)75 2325 y(of)h(an)g(explicit)i(reference)f(for)f(this.\))146 2382 y(The)j(\014rst)f(hardness)h(of)f(appro)o(ximation)h(results)g (for)f(set)h(co)o(v)o(er)f(follo)o(w)o(ed)h(from)f(w)o(ork)g(on)h (prob-)75 2438 y(abilistically)i(c)o(hec)o(k)m(able)f(pro)q(of)e (systems)f(\(PCPs\).)25 b(The)17 b(notion)g(of)g(PCPs)f(grew)h(out)g (of)f(the)h(theory)964 2581 y(2)p eop %%Page: 3 3 3 2 bop 75 311 a Fp(of)17 b(in)o(teractiv)o(e)g(pro)q(ofs)g([14)o(,)g (4,)f(6,)h(13)o(])g(\(parts)f(of)h(whic)o(h)h(w)o(e)f(will)i(review)f (shortly\))f(and)g(from)f(ma)s(jor)75 368 y(breakthroughs)e(in)i (understanding)g(their)f(p)q(o)o(w)o(er)f([25)o(,)g(32,)g(3].)19 b(The)c(relev)m(ance)h(of)e(in)o(teractiv)o(e)h(pro)q(ofs)75 424 y(for)h(pro)o(ving)h(hardness)g(of)g(appro)o(ximation)f(results)h (w)o(as)f(demonstrated)h(in)g([9],)f(and)h(further)g(dev)o(el-)75 481 y(opmen)o(ts)i(in)h([2)o(,)f(1])g(led)h(to)f(the)h(PCP)f(notion)g (as)g(stated)g(b)q(elo)o(w.)33 b(Informally)l(,)21 b(a)e(PCP)g(for)g (an)g(NP)75 537 y(language)f(is)g(a)f(metho)q(d)h(of)f(enco)q(ding)i (NP)f(witnesses,)g(coupled)h(with)f(a)f Fk(veri\014er)g Fp({)h(a)f(v)o(ery)g(e\016cien)o(t)75 594 y(randomized)f(metho)q(d)g (for)f(v)o(erifying)h(the)g(v)m(alidit)o(y)h(of)e(the)g(witness.)21 b(F)l(or)15 b(an)o(y)g(instance)h(of)f(the)h(input)75 650 y(language,)k(the)f(v)o(eri\014er)g(reads)g(only)g(a)g(constan)o(t) f(n)o(um)o(b)q(er)h(of)g(bits)g(from)f(the)h(corresp)q(onding)h(PCP)75 707 y(witness.)j(The)16 b(indices)i(of)d(these)h(bits)h(dep)q(end)g(on) f(random)g(coin)g(tosses)g(of)f(the)h(v)o(eri\014er)h(and)f(on)g(the)75 763 y(input)k(instance.)34 b(The)19 b(v)o(eri\014er)h(accepts)g(or)f (rejects)g(based)h(on)f(a)g(simple)i(predicate)g(ev)m(aluated)f(on)75 819 y(these)15 b(bits.)20 b(If)15 b(the)g(input)h(instance)g(is)g(in)f (the)g(NP)g(language,)g(then)g(there)g(is)h(a)e(w)o(a)o(y)g(of)h(enco)q (ding)h(the)75 876 y(PCP)d(witness)i(suc)o(h)f(that)f(regardless)h(of)f (the)h(bits)g(read)f(b)o(y)h(the)g(v)o(eri\014er,)g(the)g(v)o (eri\014er)g(accepts.)20 b(If)14 b(the)75 932 y(input)k(instance)g(is)f (not)f(in)i(the)f(NP)g(language,)g(then)g(an)o(y)g(string)g(giv)o(en)g (as)f(a)h(PCP)f(witness)i(will)g(b)q(e)75 989 y(accepted)c(b)o(y)f(the) h(v)o(eri\014er)g(with)f(probabilit)o(y)i(at)e(most)f(1/2)g (\(probabilit)o(y)j(tak)o(en)e(o)o(v)o(er)f(the)i(coin)g(tosses)75 1045 y(of)k(the)g(v)o(eri\014er\).)29 b(The)18 b(gap)g(b)q(et)o(w)o (een)g(the)g(probabilities)j(that)c(the)h(v)o(eri\014er)h(accepts)f (inputs)h(in)g(the)75 1102 y(NP-language)c(and)g(inputs)g(not)g(in)g (the)g(NP-language)g(is)g(a)f(k)o(ey)g(prop)q(ert)o(y)h(that)f(mak)o (es)g(PCPs)g(useful)75 1158 y(in)i(pro)o(ving)f(hardness)h(of)f(appro)o (ximation)g(results.)146 1215 y(As)21 b(sho)o(wn)f(b)o(y)h(Arora)g Fk(et.al.)f Fp([1],)h(the)h(ab)q(o)o(v)o(e)e(PCP)h(c)o(haracterization) g(of)g(NP-languages)g(\(the)75 1271 y(\\PCP)d(theorem"\))f(is)i(equiv)m (alen)o(t)h(to)e(the)g(statemen)o(t)f(that)h(it)h(is)g(NP-hard)f(to)g (appro)o(ximate)g Fk(MAX)75 1328 y(3SA)m(T)p Fp(,)13 b(meaning)j(that)e(for)g(some)h Fo(\016)f(<)f Fp(1,)h(it)h(is)h(NP)f (hard)g(to)f(distinguish)j(b)q(et)o(w)o(een)e(satis\014able)h(3CNF)75 1384 y(form)o(ulas)g(and)g(3CNF)g(form)o(ulas)f(in)i(whic)o(h)g(at)f (most)f(a)h Fo(\016)r Fp(-fraction)g(of)g(the)h(clauses)g(can)f(b)q(e)h (satis\014ed.)75 1440 y(This)e(immediately)h(implies)g(constan)o(t)d (factor)g(hardness)i(of)f(appro)o(ximation)g(results)h(for)e(a)h(v)m (ariet)o(y)g(of)75 1497 y(other)e(problems)h({)f(all)h(those)f(that)f (are)h(MAX)g(SNP-hard)h([28)o(].)19 b(One)13 b(of)f(these)g(problems)h (is)g Fk(minimum)75 1553 y(vertex)20 b(c)n(over)f Fp(in)h(b)q(ounded)h (degree)e(graphs,)h(that)e(is,)i(selecting)h(as)e(few)g(as)g(p)q (ossible)i(v)o(ertices)e(in)h(a)75 1610 y(graph)c(of)g(b)q(ounded)j (degree)d(suc)o(h)h(that)f(for)g(eac)o(h)h(edge,)g(at)f(least)h(one)f (of)g(its)h(endp)q(oin)o(ts)h(is)f(selected.)75 1666 y(As)d(v)o(ertex)g(co)o(v)o(er)f(is)i(a)e(sp)q(ecial)j(case)e(of)g(set) g(co)o(v)o(er,)f(this)i(implies)h(that)d(for)g(some)h Fo(\017)f(>)g Fp(0,)h(it)g(is)h(NP-hard)75 1723 y(to)d(appro)o(ximate)h (set)g(co)o(v)o(er)f(within)i(a)f(ratio)f(of)h(1)6 b(+)g Fo(\017)p Fp(.)19 b(Using)13 b(the)g(fact)g(that)f(the)h(graph)g(is)g (of)g(b)q(ounded)75 1779 y(degree,)i(one)g(can)h(also)f(sho)o(w)f(that) h(it)g(is)h(NP-hard)f(to)g(appro)o(ximate)f(max)h Fo(k)q Fp(-co)o(v)o(er)g(within)h(a)f(ratio)f(of)75 1836 y(1)c Fn(\000)g Fo(\017)p Fp(.)146 1892 y(T)l(o)18 b(presen)o(t)h(subsequen)o (t)g(hardness)h(of)e(appro)o(ximation)h(results,)h(w)o(e)e(let)h (TIME\()p Fo(t)p Fp(\))g(denote)g(the)75 1949 y(class)13 b(of)e(languages)i(that)e(ha)o(v)o(e)h(a)g(deterministic)i(algorithm)f (that)e(runs)i(in)g(time)g Fo(t)p Fp(,)f(and)h(let)g(ZTIME\()p Fo(t)p Fp(\))75 2005 y(denote)g(the)g(class)h(of)f(languages)g(that)f (ha)o(v)o(e)h(a)f(probabilistic)k(algorithm)d(that)f(runs)h(in)h(exp)q (ected)h(time)75 2061 y Fo(t)h Fp(\(with)g(zero)f(error\).)20 b(W)l(e)c(shall)g(ignore)g(lo)o(w)g(order)f(terms)g(in)h(the)g(appro)o (ximation)f(ratios)g(presen)o(ted)75 2118 y(b)q(elo)o(w.)146 2174 y(Lund)f(and)g(Y)l(annak)m(akis)h([26)o(])e(sho)o(w)o(ed)g(that)g (set)h(co)o(v)o(er)f(cannot)g(b)q(e)i(appro)o(ximated)e(within)i(a)e (ratio)75 2238 y(of)h(log)8 b Fo(n=)p Fp(4)15 b(unless)g Fo(N)5 b(P)19 b Fn(\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)739 2221 y Fl(O)q Fm(\()p Fp(p)q(olylog)14 b Fl(n)p Fm(\))975 2238 y Fp(\),)g(and)h(that)f(set)g(co)o(v)o(er)g(cannot)g(b)q (e)h(appro)o(ximated)75 2301 y(within)g(a)e(ratio)g(of)h(log)8 b Fo(n=)p Fp(2)13 b(unless)i Fo(N)5 b(P)19 b Fn(\032)13 b Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)1054 2285 y Fl(O)q Fm(\()p Fp(p)q(olylog)14 b Fl(n)p Fm(\))1290 2301 y Fp(\).)19 b(Their)c(pro)q(of)e(w)o(as)g(based)h(on)f(a)75 2358 y(reduction)h(from)e(e\016cien)o(t)h(t)o(w)o(o)f(pro)o(v)o(er)g(pro)q (of)g(systems)g(for)g(NP)h([6)o(].)19 b(F)l(or)12 b(our)h(purp)q(oses,) g(a)f(t)o(w)o(o)g(pro)o(v)o(er)75 2414 y(pro)q(of)e(system)g(can)h(b)q (e)g(describ)q(ed)i(as)d(a)g(PCP)h(with)g(some)f(sp)q(ecial)i(prop)q (erties.)19 b(The)11 b(alphab)q(et)h(in)f(whic)o(h)964 2581 y(3)p eop %%Page: 4 4 4 3 bop 75 311 a Fp(the)12 b(PCP)g(witness)g(is)h(enco)q(ded)g(is)g(no) f(longer)h(binary)l(,)g(and)f(its)g(cardinalit)o(y)i(ma)o(y)d(dep)q (end)j(on)e(the)g(input)75 368 y(size.)26 b(The)18 b(PCP)f(witness)g (is)h(partitioned)g(in)o(to)f(t)o(w)o(o)e(segmen)o(ts.)25 b(The)18 b(v)o(eri\014er)f(reads)g(one)h(c)o(haracter)75 424 y(from)12 b(eac)o(h)h(segmen)o(t)f(\(the)h(c)o(hoice)g(of)g(whic)o (h)g(c)o(haracter)g(to)f(read)g(is)i(based)f(on)f(the)h(input)h (instance)g(and)75 481 y(on)f(random)g(coin)h(tosses)f(of)g(the)h(v)o (eri\014er\),)f(and)h(accepts)f(or)g(rejects)g(based)h(on)g(a)f (predicate)h(ev)m(aluated)75 537 y(on)k(the)g(t)o(w)o(o)e(c)o (haracters.)27 b(More)17 b(generally)l(,)j(one)e(ma)o(y)f(view)h Fo(k)q Fp(-pro)o(v)o(er)g(pro)q(of)f(systems)g(as)h(PCPs)f(in)75 594 y(whic)o(h)f(the)f(PCP)g(witness)g(is)h(partitioned)g(in)o(to)f Fo(k)h Fp(segmen)o(ts,)e(and)i(the)f(v)o(eri\014er)g(reads)g(one)h(c)o (haracter)75 650 y(from)11 b(eac)o(h)h(segmen)o(t.)19 b(In)12 b(the)g(terminology)g(of)g(m)o(ultipro)o(v)o(er)g(pro)q(of)f (systems)h([6)o(],)g(eac)o(h)g(segmen)o(t)f(of)h(the)75 707 y(PCP)j(witness)h(is)g(though)o(t)f(of)g(as)g(b)q(eing)i(con)o (trolled)f(b)o(y)g(one)f(pro)o(v)o(er.)20 b(The)c(con)o(ten)o(ts)f(of)g (the)g(segmen)o(t)75 763 y(are)i(called)i(the)f Fk(str)n(ate)n(gy)f Fp(of)g(the)h(pro)o(v)o(er.)26 b(Reading)19 b(a)e(c)o(haracter)g(from)g (a)h(segmen)o(t)f(corresp)q(onds)h(to)75 819 y(the)c(v)o(eri\014er)h (querying)g(the)f(resp)q(ectiv)o(e)i(pro)o(v)o(er)d(as)h(to)f(the)i(v)m (alue)g(of)f(the)g(indexed)i(c)o(haracter,)d(and)i(the)75 876 y(pro)o(v)o(er)e(resp)q(onding)i(with)f(the)f(v)m(alue)i(of)e(the)h (requested)g(c)o(haracter.)k(As)c(eac)o(h)g(pro)o(v)o(er)e(is)j (queried)f(only)75 932 y(once,)19 b(our)f(description)i(corresp)q(onds) e(to)g(one)g(round)h(m)o(ultipro)o(v)o(er)f(pro)q(of)g(systems.)29 b(More)17 b(general)75 989 y(m)o(ultiround)e(pro)q(of)f(systems)g(are)g (also)h(describ)q(ed)h(in)f([6],)f(but)g(are)g(b)q(ey)o(ond)h(the)g (scop)q(e)g(of)f(the)g(curren)o(t)75 1045 y(pap)q(er.)146 1102 y(Lund)g(and)f(Y)l(annak)m(akis)i(obtained)f(their)f(hardness)h (results)g(for)e(appro)o(ximating)i(set)f(co)o(v)o(er)f(under)75 1158 y(complexit)o(y)17 b(assumptions)g(that)f(are)g(stronger)g(than)g Fo(P)21 b Fn(6)p Fp(=)16 b Fo(N)5 b(P)h Fp(.)23 b(In)18 b(order)e(to)g(get)g(hardness)h(results)75 1215 y(under)c(w)o(eak)o(er) e(complexit)o(y)i(assumptions,)g(subsequen)o(t)f(w)o(ork)f(fo)q(cused)i (on)f(reducing)i(the)e(probabilit)o(y)75 1271 y(of)18 b(falsely)h(accepting)f(in)h(a)f(m)o(ultipro)o(v)o(er)g(pro)q(of)g (system)f(\(this)h(probabilit)o(y)i(is)e(kno)o(wn)g(as)g(the)g Fk(err)n(or)75 1328 y Fp(of)k(the)h(pro)q(of)g(system\),)g(while)h (main)o(taining)g(small)g(v)m(alues)g(for)e(other)g(parameters)g(suc)o (h)h(as)g(the)75 1384 y(n)o(um)o(b)q(er)d(of)f(pro)o(v)o(ers,)g(the)g (cardinalit)o(y)i(of)e(the)g(alphab)q(et)i(and)e(the)h(n)o(um)o(b)q(er) g(of)f(random)g(bits)g(used)75 1440 y(b)o(y)f(the)h(v)o(eri\014er.)30 b(Bellare)19 b Fk(et.al.)f Fp([5])g(constructed)g(four)g(pro)o(v)o(er)g (pro)q(of)f(systems)h(that)g(implied)j(that)75 1497 y(unless)j(P=NP)f (set)f(co)o(v)o(er)g(cannot)h(b)q(e)g(appro)o(ximated)g(within)h(an)o (y)e(constan)o(t)g(ratio,)i(and)f(unless)75 1553 y Fo(N)5 b(P)19 b Fn(\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)401 1537 y Fl(O)q Fm(\(log)s(log)h Fl(n)p Fm(\))581 1553 y Fp(\))13 b(then)g(set)g(co)o(v)o(er)g(cannot)g(b)q(e)h(appro)o (ximated)f(within)i(a)e(ratio)f(of)h(log)c Fo(n=)p Fp(8.)75 1610 y(Impro)o(v)o(ed)23 b(analysis)g(of)f(t)o(w)o(o)f(pro)o(v)o(er)h (pro)q(of)g(systems)h(b)o(y)f(Raz)h([30)o(])f(implies)j(that)d(unless)i Fo(N)5 b(P)31 b Fn(\032)75 1666 y Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)263 1650 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))443 1666 y Fp(\))17 b(then)h(set)f(co)o(v)o(er)g(cannot)h(b)q(e)g (appro)o(ximated)f(within)i(a)e(ratio)g(of)g(log)8 b Fo(n=)p Fp(4,)18 b(and)75 1723 y(that)f(unless)j Fo(N)5 b(P)23 b Fn(\032)18 b Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)683 1706 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))864 1723 y Fp(\))17 b(then)i(set)f(co)o(v)o(er)f(cannot)h(b)q(e)h(appro)o (ximated)f(within)h(a)75 1779 y(ratio)c(of)f(log)9 b Fo(n=)p Fp(2.)146 1836 y(Impro)o(v)o(ed)k(deterministic)i (constructions)f(b)o(y)f(Naor)g Fk(et.al.)g Fp([27)o(])g(closed)i(the)e (gap)g(\(up)h(to)f(lo)o(w)g(order)75 1892 y(terms\))f(b)q(et)o(w)o(een) g(the)h(consequences)h(ac)o(hiev)m(able)g(under)f(the)g(assumption)f (that)g(NP)g(is)h(not)f(con)o(tained)75 1949 y(in)i(a)f(deterministic)i (time)f(class)g(and)f(the)h(assumption)f(that)g(NP)g(is)h(not)f(con)o (tained)h(in)g(a)f(probabilistic)75 2005 y(time)23 b(class.)41 b(It)22 b(follo)o(ws)g(that)g(unless)h Fo(N)5 b(P)30 b Fn(\032)25 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)1139 1988 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))1319 2005 y Fp(\))22 b(then)h(set)f(co)o(v)o(er)f(cannot)h(b)q(e)75 2061 y(appro)o(ximated)15 b(within)h(a)f(ratio)g(of)g(log)8 b Fo(n=)p Fp(2.)146 2118 y(In)22 b(our)f(w)o(ork)g(w)o(e)h(close)g(the) g(gap)f(b)q(et)o(w)o(een)h(the)g(kno)o(wn)g(ln)8 b Fo(n)22 b Fp(appro)o(ximation)g(ratio)f(and)h(the)75 2174 y(hardness)15 b(result)h(of)f(log)8 b Fo(n=)p Fp(2.)20 b(W)l(e)15 b(sho)o(w)g(that)f (the)h(upp)q(er)h(b)q(ound)h(is)e(tigh)o(t)g(\(up)g(to)g(lo)o(w)g (order)g(terms\))75 2231 y(under)h(the)f(assumption)h(that)e Fo(N)5 b(P)19 b Fn(6\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)947 2214 y Fl(O)q Fm(\(log)s(log)h Fl(n)p Fm(\))1127 2231 y Fp(\).)146 2287 y(There)18 b(are)h(only)g(few)f(NP)h (optimization)g(problems)g(that)f(are)h(kno)o(wn)f(to)g(ha)o(v)o(e)g(a) g(threshold)h(of)75 2344 y(non)o(trivial)d(nature)f(\(e.g.,)e(not)h(lo) q(cated)i(at)e(appro)o(ximation)h(ratio)f(1\).)20 b(A)14 b(v)o(ery)h(sharp)g(example)g(is)h(the)75 2400 y Fk(minimum)h Fo(p)p Fk(-c)n(enter)f Fp(problem,)g(for)f(whic)o(h)i(Hsu)f(and)g (Nemhauser)h([22)o(])e(sho)o(w)o(ed)h(that)f(it)h(is)h(NP-hard)75 2457 y(to)i(obtain)h(appro)o(ximation)g(ratios)f(b)q(elo)o(w)h(2,)h (whereas)e(Ho)q(c)o(h)o(baum)h(and)g(Shmo)o(ys)f([21],)h(and)g(Dy)o(er) 964 2581 y(4)p eop %%Page: 5 5 5 4 bop 75 311 a Fp(and)20 b(F)l(rieze)h([8)o(],)f(sho)o(w)o(ed)f(ho)o (w)h(to)f(appro)o(ximate)g(minim)o(um)i Fo(p)p Fp(-cen)o(ter)f(within)h (a)e(factor)g(of)g(2.)34 b(F)l(or)75 368 y(the)17 b Fk(minimum)h (maximal)g(indep)n(endent)e(set)h Fp(problem,)g(Halldorsson)g([16)o(])g (sho)o(ws)f(that)g(it)h(cannot)f(b)q(e)75 424 y(appro)o(ximated)g (within)h(a)e(ratio)g(of)h Fo(n)733 408 y Fm(1)p Fy(\000)p Fl(\017)794 424 y Fp(,)g(for)f(an)o(y)g Fo(\017)f(>)g Fp(0,)h(whic)o(h)i(is)f(tigh)o(t)g(up)g(to)f(m)o(ultiplicativ)o(e)j(lo) o(w)75 481 y(order)e(terms.)21 b(Another)15 b(example)i(of)e(a)h(w)o (ell)h(c)o(haracterized)f(appro)o(ximation)g(problem)g(is)g(presen)o (ted)75 537 y(in)e([19)o(].)k(Our)13 b(w)o(ork)f(sho)o(ws)g(that)g (also)h(set)f(co)o(v)o(er)h(and)f(max)h Fo(k)q Fp(-co)o(v)o(er)f(ha)o (v)o(e)g(a)h(threshold)g(of)g(a)f(non)o(trivial)75 594 y(nature.)19 b(This)14 b(can)g(b)q(e)g(extended)h(to)e(other)g (problems)h(as)f(w)o(ell,)i(as)e(the)g(same)h(threshold)g(of)f(ln)8 b Fo(n)14 b Fp(holds)75 650 y(for)j(all)i(problems)f(that)f(are)h (equiv)m(alen)o(t)h(to)e(set)h(co)o(v)o(er)f(in)h(terms)g(of)f(appro)o (ximation)h(ratio,)f(suc)o(h)h(as)75 707 y Fk(dominating)e(set)f Fp(\(see)g([29)o(])g(and)g([26)o(])g(for)g(more)f(details\).)146 763 y(A)i(surv)o(ey)g(of)g(hardness)h(of)f(appro)o(ximation)g(results)h (and)f(the)h(tec)o(hniques)g(in)o(v)o(olv)o(ed)g(is)g(pro)o(vided)75 819 y(b)o(y)e(Arora)f(and)i(Lund)g(in)g([20)o(].)146 876 y Fg(Remark:)44 b Fp(A)20 b(preliminary)h(v)o(ersion)e(of)g(this)h (pap)q(er,)h(without)e(the)h(results)f(on)h(max)f Fo(k)q Fp(-co)o(v)o(er,)75 932 y(app)q(eared)d(in)g(the)f(Pro)q(ceedings)i(of) d(the)i(28th)e(Ann)o(ual)i(A)o(CM)f(Symp)q(osium)h(on)f(the)h(Theory)f (of)f(Com-)75 989 y(puting,)j(1996.)23 b(Since)18 b(then,)f(sev)o(eral) g(other)f(thresholds)h(for)f(appro)o(ximation)g(w)o(ere)g(disco)o(v)o (ered.)25 b(Es-)75 1045 y(sen)o(tially)d(tigh)o(t)e Fo(O)q Fp(\()p Fo(n)456 1029 y Fm(1)p Fy(\000)p Fl(\017)517 1045 y Fp(\))g(hardness)h(of)f(appro)o(ximation)g(results)h(where)g (obtained)g(for)f(clique)i(and)75 1102 y(indep)q(enden)o(t)h(set)d([17) o(],)h(and)f(for)g(c)o(hromatic)g(n)o(um)o(b)q(er)g([11)o(].)35 b(Tigh)o(t)20 b(constan)o(t)g(factor)f(hardness)h(of)75 1158 y(appro)o(ximation)14 b(results)h(w)o(ere)e(obtain)i(for)e(sev)o (eral)h(problems)h(in)g([18)o(],)f(including)j(a)c(threshold)i(of)f(7)p Fo(=)p Fp(8)75 1215 y(for)k(MAX)f(3SA)l(T.)h(As)g(for)g(set)g(co)o(v)o (er,)g(Raz)g(and)g(Safra)g([31)o(])g(constructed)g(new)g(lo)o(w)g (error)g(constan)o(t)75 1271 y(pro)o(v)o(er)e(pro)q(of)h(systems)g(and) g(used)h(them)f(to)g(sho)o(w)f(that)h(for)f(some)h(constan)o(t)g Fo(c)e(>)i Fp(0,)g(it)g(is)h(NP-hard)75 1328 y(to)h(appro)o(ximate)h (set)g(co)o(v)o(er)f(within)i(a)f(ratio)f(of)h Fo(c)8 b Fp(log)g Fo(n)p Fp(.)34 b(It)20 b(is)h(not)e(kno)o(wn)h(whether)g (hardness)g(of)75 1384 y(appro)o(ximating)15 b(set)g(co)o(v)o(er)g (within)h(a)f(ratio)g(of)f(ln)9 b Fo(n)15 b Fp(\(up)g(to)g(lo)o(w)g (order)g(terms\))f(can)i(b)q(e)f(sho)o(wn)g(under)75 1440 y(the)g(assumption)h(that)e Fo(P)19 b Fn(6)p Fp(=)13 b Fo(N)5 b(P)h Fp(,)15 b(rather)g(than)g Fo(N)5 b(P)18 b Fn(6\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)1261 1424 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))1441 1440 y Fp(\).)75 1562 y Fh(1.2)56 b(Ov)n(erview)75 1648 y Fp(W)l(e)21 b(giv)o(e)h(a)f(high)h(lev)o(el)g(o)o(v)o(erview)g(of)e (the)i(main)f(ideas)h(in)g(our)f(pro)q(of)g(that)g(set)g(co)o(v)o(er)g (is)g(hard)h(to)75 1704 y(appro)o(ximate)d(within)i(a)e(ratio)g(of)g (ln)8 b Fo(n)p Fp(.)33 b(The)20 b(pro)q(of)f(that)g(max)g Fo(k)q Fp(-co)o(v)o(er)g(is)h(hard)g(to)e(appro)o(ximate)75 1761 y(within)e(a)f(ratio)g(of)g(1)10 b Fn(\000)g Fp(1)p Fo(=e)15 b Fp(is)h(based)f(on)g(similar)i(ideas.)146 1817 y(The)e(pro)q(of)g(of)f(Lund)j(and)e(Y)l(annak)m(akis)h(in)o(v)o (olv)o(es)g(a)e(com)o(binatorial)i(construction,)f(and)g(a)g(reduc-)75 1874 y(tion)g(from)f(t)o(w)o(o)f(pro)o(v)o(er)h(pro)q(of)g(systems)g (to)g(set)g(co)o(v)o(er)g(whic)o(h)h(uses)g(the)g(com)o(binatorial)g (construction.)75 1930 y(The)e(ratio)g(of)f(log)d Fo(n=)p Fp(2)j(comes)h(up)h(from)e(the)h(follo)o(wing)h(construction.)19 b(There)13 b(is)h(a)e(set)h Fo(S)j Fp(of)c Fo(m)h Fp(p)q(oin)o(ts,)75 1987 y(and)i(a)g(collection)h Fn(F)j Fp(of)c(subsets)g(of)f Fo(S)j Fp(and)e(their)h(complemen)o(ts,)f(eac)o(h)g(of)f(size)i Fo(m=)p Fp(2.)j(A)c Fk(go)n(o)n(d)g Fp(w)o(a)o(y)e(of)75 2043 y(co)o(v)o(ering)g Fo(S)i Fp(is)e(b)o(y)g(taking)g(a)f(subset)h (and)g(its)g(complemen)o(t,)g(th)o(us)g(using)g(only)g(t)o(w)o(o)f (subsets.)19 b(The)13 b(com-)75 2100 y(binatorial)k(construction)g(is)f (suc)o(h)h(that)e(an)o(y)h Fk(b)n(ad)g Fp(co)o(v)o(er)g(of)g Fo(S)i Fp(that)e(do)q(es)g(not)g(include)j(a)c(subset)i(and)75 2156 y(its)g(complemen)o(t)g(m)o(ust)g(use)g(at)f(least)h(roughly)g (log)8 b Fo(m)17 b Fp(subsets)g(from)f Fn(F)5 b Fp(.)24 b(Hence)17 b(the)g(ratio)g(b)q(et)o(w)o(een)75 2213 y(the)g(go)q(o)q(d) g(case)g(and)h(the)f(bad)g(case)g(is)h(log)8 b Fo(m=)p Fp(2.)25 b(W)l(e)17 b(remark)g(that)f(a)h(com)o(binatorial)h (construction)75 2269 y(with)h(prop)q(erties)g(as)f(describ)q(ed)i(ab)q (o)o(v)o(e)e(is)h(easy)g(to)e(come)i(b)o(y:)26 b(standard)18 b(probabilistic)j(argumen)o(ts)75 2325 y(sho)o(w)16 b(that)f(if)i(the)f (subsets)g(in)h Fn(F)k Fp(are)16 b(c)o(hosen)g(at)g(random,)f(then)i (with)f(high)h(probabilit)o(y)h(ev)o(ery)e(bad)75 2382 y(co)o(v)o(er)d(requires)h(at)f(least)h(roughly)g(log)8 b Fo(m)14 b Fp(subsets,)f(as)h(desired.)20 b(Lund)15 b(and)f(Y)l(annak)m(akis)g(sho)o(w)o(ed)f(ho)o(w)75 2438 y(to)h(reduce)h(t)o(w)o(o)e(pro)o(v)o(er)h(pro)q(of)g(systems)f(for)h (satis\014abilit)o(y)i(of)e(a)g(form)o(ula)g Fo(\036)g Fp(to)g(a)g(collection)i(of)e(sets)g(as)964 2581 y(5)p eop %%Page: 6 6 6 5 bop 75 311 a Fp(describ)q(ed)17 b(ab)q(o)o(v)o(e,)e(suc)o(h)h(that) e(if)i Fo(\036)f Fp(is)h(satis\014able,)g(all)g(sets)f(are)g(co)o(v)o (ered)g(b)o(y)h(the)f(go)q(o)q(d)g(w)o(a)o(y)l(,)g(and)g(if)h Fo(\036)75 368 y Fp(is)g(not)f(satis\014able,)g(most)g(sets)f(need)j (to)d(b)q(e)i(co)o(v)o(ered)f(b)o(y)g(the)g(bad)h(w)o(a)o(y)l(.)146 424 y(T)l(o)k(pro)o(v)o(e)g(a)g(ln)9 b Fo(n)20 b Fp(ratio,)h(w)o(e)g (consider)g(a)f(mo)q(di\014ed)i(construction)f(whic)o(h)h(w)o(e)e(call) i(a)e Fk(p)n(artition)75 481 y(system)p Fp(.)36 b(There)21 b(is)h(a)e(set)h Fo(S)i Fp(of)e Fo(m)g Fp(p)q(oin)o(ts,)h(and)f(a)g (collection)h Fn(F)j Fp(of)c(subsets)g(of)f Fo(S)s Fp(,)i(eac)o(h)f(of) f(size)75 537 y Fo(m=k)q Fp(,)i(where)f Fo(k)h Fp(is)f(a)g(large)f (constan)o(t.)36 b(Eac)o(h)21 b(subset)g(is)h(asso)q(ciated)f(with)g Fo(k)15 b Fn(\000)f Fp(1)21 b(other)f(pairwise)75 594 y(disjoin)o(t)d(subsets)g(of)f(size)i Fo(m=k)f Fp(that)f(together)g (partition)h Fo(S)i Fp(in)o(to)e Fo(k)g Fp(equal)h(parts.)23 b(A)17 b(go)q(o)q(d)f(co)o(v)o(er)g(of)75 650 y Fo(S)21 b Fp(b)o(y)e(disjoin)o(t)h(subsets)f(requires)g(only)h Fo(k)f Fp(subsets.)31 b(A)19 b(bad)g(co)o(v)o(er)f(needs)i(roughly)f Fo(d)g Fp(subsets)g(\(not)75 707 y(b)q(elonging)d(to)e(the)h(same)f (partition\))g(in)i(order)e(to)g(co)o(v)o(er)g Fo(S)s Fp(,)f(where)i(\(1)8 b Fn(\000)i Fp(1)p Fo(=k)q Fp(\))1446 690 y Fl(d)1478 707 y Fn(')j Fp(1)p Fo(=m)p Fp(.)19 b(As)14 b Fo(k)i Fp(gro)o(ws,)75 763 y Fo(d)h Fp(tends)g(to)f Fo(k)9 b Fp(ln)f Fo(m)p Fp(.)25 b(The)17 b(ratio)g(b)q(et)o(w)o(een)g (the)g(t)o(w)o(o)f(cases)h(approac)o(hes)g(ln)8 b Fo(m)p Fp(,)17 b(as)f(desired.)27 b(Again,)17 b(a)75 819 y(construction)12 b(based)h(on)f(random)f(subsets)h(of)g(size)h Fo(m=k)g Fp(will)g(with)g(high)f(probabilit)o(y)i(ha)o(v)o(e)d(prop)q(erties)75 876 y(as)k(describ)q(ed)i(ab)q(o)o(v)o(e.)146 932 y(T)l(o)10 b(mak)o(e)h(use)g(of)g(the)g(ab)q(o)o(v)o(e)f(setting,)i(w)o(e)f (design)h(a)e(new)i Fo(k)q Fp(-pro)o(v)o(er)e(pro)q(of)h(system)f(for)h (satis\014abilit)o(y)l(.)75 989 y(W)l(e)h(remark)e(that)h(already)h(in) g([5])f(hardness)h(results)g(for)f(set)g(co)o(v)o(er)g(w)o(ere)g(pro)o (v)o(ed)g(using)h Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)75 1045 y(system,)16 b(where)h Fo(k)f Fp(=)g(4.)24 b(Ho)o(w)o(ev)o(er,)16 b(these)h(hardness)g(results)g(ga)o(v)o(e)e(p)q(o)q(orer)i(b)q(ounds)h (on)e(the)h(ratio)f(of)75 1102 y(appro)o(ximation)h(than)g(those)g (obtainable)h(from)f(t)o(w)o(o)f(pro)o(v)o(er)g(pro)q(of)h(systems.)25 b(The)18 b(reason)e(wh)o(y)h(w)o(e)75 1158 y(obtain)g(stronger)f(b)q (ounds)h(is)h(that)e(w)o(e)g(in)o(tro)q(duce)i(a)e(new)h(ingredien)o(t) h(in)o(to)f Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)g(systems)75 1215 y({)g(that)g(of)g(ha)o(ving)h(t)o(w)o(o)e(di\013eren)o(t)i (acceptance)g(predicates,)h(a)e Fk(str)n(ong)g Fp(acceptance)h (predicate,)g(and)g(a)75 1271 y Fk(we)n(ak)e Fp(acceptance)h (predicate.)22 b(In)16 b(our)f(pro)q(of)g(system,)g(the)h(di\013erence) g(b)q(et)o(w)o(een)g(the)g(case)f(when)h Fo(\036)f Fp(is)75 1328 y(satis\014able)i(and)g(the)f(case)g(when)h Fo(\036)f Fp(is)h(not)f(satis\014able)h(is)g(not)f(only)h(in)g(the)f(acceptance)h (probabilit)o(y)l(,)75 1384 y(but)i(also)f(in)h(the)g(acceptance)g (predicate.)30 b(If)19 b Fo(\036)f Fp(is)h(satis\014able,)h(the)e(pro)o (v)o(ers)g(ha)o(v)o(e)g(a)g(strategy)f(that)75 1440 y(alw)o(a)o(ys)j (satis\014es)h(the)g(strong)f(acceptance)h(predicate)h(\(and)f(hence)h (also)f(the)g(w)o(eak)f(one\).)36 b(If)22 b Fo(\036)e Fp(is)75 1497 y(not)15 b(satis\014able,)i(then)f(an)o(y)g(strategy)e (of)i(the)g(pro)o(v)o(ers)f(satis\014es)h(the)g(w)o(eak)f(acceptance)h (predicate)h(on)75 1553 y(only)j(a)g(small)g(fraction)g(of)f(the)h(p)q (ossible)h(queries)g(of)e(the)h(v)o(eri\014er.)34 b(The)20 b(gap)f(that)g(w)o(e)h(obtain)g(for)75 1610 y(appro)o(ximating)c(set)g (co)o(v)o(er)f(is)i(due)g(in)g(part)e(to)h(the)g(di\013erence)i(in)f (acceptance)f(probabilit)o(y)i(b)q(et)o(w)o(een)75 1666 y(the)k(cases)g(that)f Fo(\036)h Fp(is)g(satis\014able)h(and)f Fo(\036)g Fp(is)h(not)e(satis\014able,)j(and)f(in)f(part)g(to)f(the)h (di\013erence)h(in)75 1723 y(acceptance)16 b(predicate.)146 1779 y(In)e(Section)h(2)e(w)o(e)h(describ)q(e)h(our)f Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)h(system.)19 b(It)14 b(is)g(fortunate)f(that)g(w)o(e)h(can)f(in)o(v)o(ok)o(e)h(a)75 1836 y(recen)o(t)i(theorem)f(of)h(Raz)g([30)o(])g(regarding)f (reduction)i(of)f(error)f(b)o(y)h(parallel)h(rep)q(etition.)23 b(In)17 b(con)o(trast,)75 1892 y(Lund)k(and)g(Y)l(annak)m(akis)g(used)g (the)f(more)g(complicated)i(t)o(w)o(o)d(pro)o(v)o(er)g(pro)q(of)h (system)g(of)g(F)l(eige)h(and)75 1949 y(Lo)o(v)m(asz)14 b([12)o(])g(\(the)g(result)g(of)g([30)o(])g(w)o(as)f(not)h(a)o(v)m (ailable)i(at)d(the)h(time\),)g(without)g(actually)h(describing)h(it.) 146 2005 y(In)j(Section)h(3)e(w)o(e)h(explain)i(ho)o(w)d(to)g (construct)h(the)g(partition)g(systems)f(men)o(tioned)i(ab)q(o)o(v)o (e.)30 b(In)75 2061 y(Section)12 b(4)f(w)o(e)g(describ)q(e)i(the)f (reduction)g(from)f(our)g Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)h(system)g (to)g(set)g(co)o(v)o(er.)18 b(In)12 b(Section)g(5)75 2118 y(w)o(e)h(sho)o(w)g(that)g Fk(max)i Fo(k)q Fk(-c)n(over)e Fp(has)h(an)f(appro)o(ximation)g(threshold)h(at)f(1)7 b Fn(\000)g Fp(1)p Fo(=e)12 b Fp(under)i(the)g(assumption)75 2174 y(that)h Fo(P)20 b Fn(6)p Fp(=)14 b Fo(N)5 b(P)h Fp(.)21 b(In)16 b(Section)h(6)e(w)o(e)h(analyze)g(the)g(lo)o(w)f(order) h(terms)f(for)g(hardness)h(of)f(appro)o(ximation)75 2231 y(for)i(set)h(co)o(v)o(er.)27 b(Under)19 b(the)f(assumption)g(that)f Fo(N)5 b(P)23 b Fn(6\032)18 b Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\(2)1295 2214 y Fl(n)1316 2203 y Ff(\021)1336 2231 y Fp(\))17 b(for)g(some)h Fo(\021)g(>)g Fp(0,)g(w)o(e)g(sho)o(w)75 2287 y(that)f(set)h(co)o(v)o(er)g(cannot)f(b)q(e)i(appro)o(ximated)f (within)h(ln)9 b Fo(n)j Fn(\000)g Fo(c)p Fp(\(ln)c(ln)h Fo(n)p Fp(\))1328 2271 y Fm(2)1347 2287 y Fp(,)19 b(for)e(some)h (constan)o(t)f Fo(c)h Fp(that)75 2344 y(dep)q(ends)f(on)e Fo(\021)r Fp(.)964 2581 y(6)p eop %%Page: 7 7 7 6 bop 75 311 a Fq(2)69 b(A)23 b(m)n(ult)o(i)o(-pro)n(v)n(er)e(pro)r (of)k(system)75 413 y Fp(Our)20 b(result)g(is)f(based)h(on)f(a)g (reduction)i(from)d(a)h(m)o(ulti-pro)o(v)o(er)h(pro)q(of)f(system.)32 b(In)20 b(Section)g(2.1)e(w)o(e)75 469 y(describ)q(e)f(the)e(NP-hard)g (problem)h(MAX)f(3SA)l(T-5)h(for)e(whic)o(h)i(w)o(e)f(construct)g(the)g (m)o(ultipro)o(v)o(er)g(pro)q(of)75 526 y(system.)k(This)c(sp)q (eci\014c)h(problem)f(has)g(a)f(regular)g(structure)g(that)g(will)i (later)e(b)q(e)h(used)g(in)g(pro)o(ving)g(the)75 582 y(hardness)e(of)e(appro)o(ximating)i(set)f(co)o(v)o(er.)18 b(In)13 b(Section)g(2.2)f(w)o(e)g(use)g(standard)g(tec)o(hniques)i(to)d (construct)75 639 y(a)16 b(lo)o(w)g(error)g(t)o(w)o(o)f(pro)o(v)o(er)g (pro)q(of)h(system)g(for)f(MAX)h(3SA)l(T-5.)23 b(In)17 b(Section)h(2.3)d(w)o(e)h(construct)g(our)g Fo(k)q Fp(-)75 695 y(pro)o(v)o(er)c(pro)q(of)g(system)h(for)f(MAX)h(3SA)l(T-5.)19 b(This)13 b(pro)q(of)f(system)h(has)f(the)h(new)g(feature)g(of)f(ha)o (ving)h(t)o(w)o(o)75 752 y(di\013eren)o(t)i(acceptance)f(predicates,)h (whic)o(h)h(is)e(used)h(in)h(pro)o(ving)e(the)g(hardness)h(of)f(appro)o (ximating)g(set)75 808 y(co)o(v)o(er.)24 b(W)l(e)17 b(remark)f(that)g (the)h(t)o(w)o(o)e(pro)o(v)o(er)h(pro)q(of)h(system)f(of)h(Section)g (2.2)f(is)h(presen)o(ted)h(only)f(so)f(as)75 864 y(to)f(pro)o(vide)i (in)o(tuition)h(and)e(help)h(in)g(the)f(analysis)h(of)f(the)g(\014nal)h Fo(k)q Fp(-pro)o(v)o(er)e(pro)q(of)h(system,)f(and)i(is)f(not)75 921 y(used)g(elsewhere)g(in)g(our)f(pap)q(er.)75 1043 y Fh(2.1)56 b(The)18 b(underlying)f(NP-complete)f(language)75 1128 y Fp(Our)g(starting)e(p)q(oin)o(t)i(is)g(the)f(problem)h(of)e Fg(MAX)j(3SA)l(T-B)p Fp(.)146 1185 y Fk(Input:)25 b Fp(A)18 b(CNF)g(form)o(ula)g(with)g Fo(n)h Fp(v)m(ariables)g(in)g(whic)o(h)g (ev)o(ery)f(clause)h(con)o(tains)f(at)g(most)f(three)75 1241 y(literals)d(\(a)d(literal)j(is)f(a)f(Bo)q(olean)h(v)m(ariable)h (in)f(either)g(p)q(ositiv)o(e)g(or)f(negated)g(form\),)g(and)g(ev)o (ery)h(v)m(ariable)75 1298 y(app)q(ears)i(in)h(a)f(b)q(ounded)i(n)o(um) o(b)q(er)e(of)g(clauses.)146 1354 y Fk(Output:)h Fp(The)f(maxim)o(um)g (n)o(um)o(b)q(er)h(of)e(clauses)i(that)f(can)g(b)q(e)h(satis\014ed)g (sim)o(ultaneously)g(b)o(y)f(some)75 1411 y(assignmen)o(t)g(to)g(the)g (v)m(ariables.)146 1467 y(The)g(follo)o(wing)h(w)o(ell)g(kno)o(wn)f (theorem)g(app)q(ears)g(in)h([1,)e(28].)75 1573 y Fg(Theorem)h(1)23 b Fk(It)14 b(is)g(MAX-SNP)f(har)n(d)i(to)f(appr)n(oximate)i(MAX)d(3SA)m (T-B:)h(for)g(some)g Fo(\017)g(>)f Fp(0)p Fk(,)h(it)g(is)g(NP-)75 1630 y(har)n(d)19 b(to)h(distinguish)e(b)n(etwe)n(en)f(satis\014able)h (3CNF-B)g(formulas,)i(and)f(3CNF-B)f(formulas)h(in)f(which)75 1686 y(at)f(most)f(an)g Fp(\(1)10 b Fn(\000)g Fo(\017)p Fp(\))p Fk(-fr)n(action)16 b(of)h(the)f(clauses)g(c)n(an)f(b)n(e)h (satis\014e)n(d)f(simultane)n(ously.)146 1793 y Fp(W)l(e)h(w)o(ould)i (lik)o(e)f(to)g(w)o(ork)e(with)i(3CNF-B)g(form)o(ulas)f(that)g(ha)o(v)o (e)h(a)f(v)o(ery)g(regular)h(structure,)g(and)75 1849 y(hence)f(de\014ne)h(the)e(problem)h(of)f Fg(MAX)h(3SA)l(T-5)p Fp(.)146 1906 y Fk(Input:)i Fp(A)13 b(CNF)f(form)o(ula)g(with)g Fo(n)h Fp(v)m(ariables)h(and)e(5)p Fo(n=)p Fp(3)g(clauses,)i(in)f(whic) o(h)g(ev)o(ery)g(clause)g(con)o(tains)75 1962 y(exactly)h(three)g (literals,)h(ev)o(ery)f(v)m(ariable)i(app)q(ears)e(in)h(exactly)f (\014v)o(e)g(clauses,)h(and)f(a)g(v)m(ariable)h(do)q(es)f(not)75 2018 y(app)q(ear)h(in)h(a)f(clause)h(more)f(than)g(once.)146 2075 y Fk(Output:)h Fp(The)f(maxim)o(um)g(n)o(um)o(b)q(er)h(of)e (clauses)i(that)f(can)g(b)q(e)h(satis\014ed)g(sim)o(ultaneously)g(b)o (y)f(some)75 2131 y(assignmen)o(t)g(to)g(the)g(v)m(ariables.)75 2238 y Fg(Prop)q(osition)k(2)j Fk(F)m(or)d(some)h Fo(\017)e(>)h Fp(0)p Fk(,)h(it)f(is)g(NP-har)n(d)h(to)f(distinguish)g(b)n(etwe)n(en)f (satis\014able)g(3CNF-5)75 2294 y(formulas,)h(and)g(3CNF-5)f(formulas)h (in)f(which)h(at)g(most)g(a)f Fp(\(1)12 b Fn(\000)g Fo(\017)p Fp(\))p Fk(-fr)n(action)18 b(of)h(the)g(clauses)f(c)n(an)g(b)n(e)75 2351 y(satis\014e)n(d)d(simultane)n(ously.)964 2581 y Fp(7)p eop %%Page: 8 8 8 7 bop 146 311 a Fg(Pro)q(of:)18 b Fp(The)13 b(pro)q(of)g(uses)g(kno)o (wn)g(tec)o(hniques,)h(and)f(is)g(only)h(sk)o(etc)o(hed)f(b)q(elo)o(w.) 19 b(It)13 b(is)h(based)f(on)g(the)75 368 y(hardness)k(of)g(appro)o (ximating)g(MAX)g(3SA)l(T-B)g(\(Theorem)g(1\).)25 b(W)l(e)17 b(c)o(hange)g(an)g(arbitrary)f(3CNF-B)75 424 y(form)o(ula)f Fo( )h Fp(to)f(a)g(new)g(3CNF-5)f(form)o(ula)h Fo(\036)g Fp(\(on)g(a)g(di\013eren)o(t)h(set)e(of)h(v)m(ariables\).)146 481 y(Consider)g(an)o(y)f(v)m(ariable)i Fo(x)f Fp(and)g(let)g Fo(b)f Fp(b)q(e)h(the)g(n)o(um)o(b)q(er)g(of)f(o)q(ccurrences)i(of)e Fo(x)h Fp(in)g Fo( )r Fp(.)k Fo(b)14 b Fp(is)i(b)q(ounded)75 537 y(from)h(ab)q(o)o(v)o(e)h(b)o(y)f(some)h(univ)o(ersal)h(constan)o (t,)e(and)h(w.l.o.g,)f(w)o(e)g(also)h(assume)g(that)f Fo(b)g Fn(\025)g Fp(2.)27 b(Replace)75 594 y(eac)o(h)21 b(o)q(ccurrence)g(of)f Fo(x)h Fp(b)o(y)f(a)g(fresh)h(v)m(ariable)h Fo(x)947 601 y Fl(i)961 594 y Fp(,)f(for)f(0)h Fn(\024)h Fo(i)f Fn(\024)h Fo(b)13 b Fn(\000)h Fp(1,)21 b(and)g(add)g(the)f(2)p Fo(b)g Fp(clauses)75 650 y(\()p Fo(x)119 657 y Fl(i)143 650 y Fn(_)14 b Fp(\026)-26 b Fo(x)210 657 y Fl(i)p Fm(+1)269 650 y Fp(\),)15 b(\()s(\026)-26 b Fo(x)359 657 y Fl(i)384 650 y Fn(_)10 b Fo(x)450 657 y Fl(i)p Fm(+1)510 650 y Fp(\),)15 b(where)h Fo(i)10 b Fp(+)h(1)k(is)h(computed)h(mo)q(d)f Fo(b)p Fp(.)21 b(These)16 b(clauses)g(are)g(satis\014ed)g(only)g(if)75 707 y Fo(x)101 714 y Fl(i)129 707 y Fp(=)e Fo(x)204 714 y Fl(i)p Fm(+1)279 707 y Fp(for)h(ev)o(ery)h Fo(i)p Fp(.)21 b(No)o(w)15 b(eac)o(h)h(v)m(ariable)h(app)q(ears)f(exactly)g(5)g (times,)g(and)g(no)g(v)m(ariable)h(app)q(ears)75 763 y(more)h(than)g(once)h(in)h(the)e(same)h(clause.)30 b(F)l(or)18 b(clauses)i(that)d(are)i(shorter)f(than)g(three,)h(add)g(a)f(fresh)75 819 y(dumm)o(y)c(literal)19 b(\026)-27 b Fo(y)r Fp(,)14 b(and)h(add)f(the)g(follo)o(wing)h(clauses)g(with)f(additional)i(dumm)o (y)e(v)m(ariables)h Fo(z)1700 826 y Fm(1)1734 819 y Fp(and)g Fo(z)1843 826 y Fm(2)1862 819 y Fp(:)75 876 y(\()p Fo(y)10 b Fn(_)f Fo(z)185 883 y Fm(1)213 876 y Fn(_)g Fo(z)273 883 y Fm(2)293 876 y Fp(\),)14 b(\()p Fo(y)c Fn(_)h Fp(\026)-26 b Fo(z)447 883 y Fm(1)476 876 y Fn(_)9 b Fo(z)536 883 y Fm(2)555 876 y Fp(\),)14 b(\()p Fo(y)c Fn(_)f Fo(z)710 883 y Fm(1)738 876 y Fn(_)j Fp(\026)-26 b Fo(z)798 883 y Fm(2)818 876 y Fp(\),)14 b(and)g(\()p Fo(y)d Fn(_)g Fp(\026)-26 b Fo(z)1060 883 y Fm(1)1089 876 y Fn(_)11 b Fp(\026)-26 b Fo(z)1148 883 y Fm(2)1168 876 y Fp(\).)20 b(These)14 b(clauses)i(are)e(satis\014ed)h(only)f(if)75 932 y Fo(y)h Fp(=)e(1,)g(in)i(whic)o(h)g(case)i(\026)-26 b Fo(y)16 b Fp(has)e(no)g(in\015uence)i(on)e(the)g(original)i(clause)f (to)e(whic)o(h)i(it)f(w)o(as)g(added.)20 b(Add)14 b(a)75 989 y(constan)o(t)e(n)o(um)o(b)q(er)h(of)g(additional)h(dumm)o(y)f(v)m (ariables)i Fo(w)1063 996 y Fl(i)1089 989 y Fp(so)e(that)f(the)h(total) g(n)o(um)o(b)q(er)g(of)f(v)m(ariables)j(\(of)75 1045 y(the)h(t)o(yp)q(es)g Fo(x)301 1052 y Fl(i)315 1045 y Fp(,)g Fo(y)366 1052 y Fl(i)380 1045 y Fp(,)g Fo(z)430 1052 y Fl(i)444 1045 y Fp(,)g(and)g Fo(w)595 1052 y Fl(i)609 1045 y Fp(\))g(is)g(divisible)j(b)o(y)d(3,)g(and)g(add)g(dumm)o(y)g (3-CNF)g(clauses)g(that)g(con)o(tain)75 1102 y(distinct)22 b(dumm)o(y)e(v)m(ariables)i Fo(z)629 1109 y Fl(i)664 1102 y Fp(and)f Fo(w)791 1109 y Fl(i)825 1102 y Fp(in)g(p)q(ositiv)o(e) h(form,)f(un)o(til)g(eac)o(h)g(dumm)o(y)g(v)m(ariable)h(o)q(ccurs)75 1158 y(exactly)16 b(\014v)o(e)f(times.)146 1215 y(The)g(ab)q(o)o(v)o(e) g(reduction)h(has)f(the)g(follo)o(wing)h(prop)q(erties)g(\(pro)q(of)f (left)g(to)g(the)g(reader\):)131 1321 y(1.)22 b(The)15 b(reduction)h(tak)o(es)f(p)q(olynomial)h(time.)131 1415 y(2.)22 b(If)15 b Fo( )h Fp(is)g(satis\014able)g(then)g(so)f(is)g Fo(\036)p Fp(.)131 1509 y(3.)22 b(The)15 b(n)o(um)o(b)q(er)g(of)f (clauses)i(increases)g(b)o(y)f(at)f(most)g(a)g(constan)o(t)g(m)o (ultiplicativ)o(e)k(factor.)g(\(This)d(is)189 1565 y(a)g(consequence)h (of)f(the)g(fact)g(that)f(eac)o(h)i(clause)g(in)g Fo( )g Fp(is)g(of)f(b)q(ounded)h(length\).)131 1659 y(4.)22 b(The)d(n)o(um)o(b)q(er)g(of)g(unsatis\014able)h(clauses)g(decreases)g (b)o(y)f(at)f(most)h(a)f(constan)o(t)h(m)o(ultiplicativ)o(e)189 1715 y(factor.)40 b(\(This)23 b(is)g(a)f(consequence)i(of)e(the)h(fact) f(that)f(eac)o(h)i(v)m(ariable)h(app)q(ears)e(a)h(b)q(ounded)189 1772 y(n)o(um)o(b)q(er)15 b(of)g(times)g(in)h Fo( )r Fp(\).)146 1878 y(Prop)q(erties)e(3)f(and)h(4)f(ab)q(o)o(v)o(e)h(imply) h(that)e(if)h(a)f Fo(\016)r Fp(-fraction)h(of)f(the)h(causes)g(of)f Fo( )i Fp(are)e(not)g(satis\014able,)75 1934 y(then)21 b(an)g Fo(\017)p Fp(-fraction)g(of)f(the)h(causes)g(of)f Fo( )i Fp(are)f(not)f(satis\014able,)j(for)d(some)g Fo(\017)h Fp(that)f(dep)q(ends)j(on)d Fo(\016)r Fp(.)75 1991 y(Hence)i(if)g(one)g (could)h(distinguish)g(in)g(p)q(olynomial)g(time)f(b)q(et)o(w)o(een)f (satis\014able)i(3CNF-5)d(form)o(ulas)75 2047 y(and)g(3CNF-5)e(form)o (ulas)h(in)h(whic)o(h)h(at)d(most)h(a)g(\(1)12 b Fn(\000)i Fo(\017)p Fp(\)-fraction)19 b(of)g(the)h(clauses)g(can)f(b)q(e)h (satis\014ed)75 2104 y(sim)o(ultaneously)l(,)c(then)g(one)f(could)i (distinguish)g(in)f(p)q(olynomial)h(time)f(b)q(et)o(w)o(een)f (satis\014able)h(3CNF-B)75 2160 y(form)o(ulas)h(and)i(3CNF-B)e(form)o (ulas)g(in)i(whic)o(h)g(at)e(most)g(a)h(\(1)11 b Fn(\000)i Fo(\016)r Fp(\)-fraction)k(of)h(the)g(clauses)g(can)g(b)q(e)75 2217 y(satis\014ed)e(sim)o(ultaneously)l(.)59 b Fe(2)146 2273 y Fp(F)l(ollo)o(wing)18 b(the)g(NP-hardness)h(result)f(of)g(Prop)q (osition)g(2,)g(w)o(e)g(shall)h(assume)f(that)f(the)i(input)g(to)75 2330 y(the)e(m)o(ultipro)o(v)o(er)g(pro)q(of)f(systems)h(that)f(w)o(e)g (construct)h(is)g(either)h(a)e(satis\014able)i(3CNF-5)e(form)o(ula)h (\(a)75 2386 y Fk(true)e Fp(input\),)f(or)g(a)g(3CNF-5)f(form)o(ula)h (in)h(whic)o(h)g(ev)o(ery)f(assignmen)o(t)g(to)f(the)h(v)m(ariables)i (fails)f(to)e(satisfy)75 2443 y(an)i Fo(\017)p Fp(-fraction)h(of)f(the) g(clauses,)g(for)g(some)g(univ)o(ersal)h(constan)o(t)f Fo(\017)e(>)g Fp(0)i(\(a)f Fk(false)h Fp(input\).)964 2581 y(8)p eop %%Page: 9 9 9 8 bop 75 311 a Fh(2.2)56 b(A)19 b(t)n(w)n(o)g(pro)n(v)n(er)g(pro)r (of)g(system)d(for)j(MAX)g(3SA)-5 b(T-5)75 397 y Fp(Using)14 b(kno)o(wn)g(tec)o(hniques,)h(w)o(e)f(construct)f(a)h(one-round)g(t)o (w)o(o-pro)o(v)o(er)e(pro)q(of)h(system)h(for)f(3SA)l(T-5.)19 b(In)75 454 y(our)c(t)o(w)o(o-pro)o(v)o(er)e(pro)q(of)i(system,)g(the)g (\014rst)g(pro)o(v)o(er)f(receiv)o(es)i(as)f(a)g(query)g(the)h(index)g (of)f(a)g(clause,)h(and)75 510 y(returns)g(as)g(an)h(answ)o(er)f(a)g (sequence)h(of)f(three)h(bits)g(\(i.e.,)f(a)g(v)m(alue)i(b)q(et)o(w)o (een)e(0)g(and)h(7\).)23 b(These)17 b(three)75 567 y(bits)e(can)f(b)q (e)i(view)o(ed)f(as)f(Bo)q(olean)h(assignmen)o(ts)f(to)g(the)g(three)h (v)m(ariables)h(of)e(the)g(clause.)21 b(The)14 b(second)75 623 y(pro)o(v)o(er)i(receiv)o(es)h(as)f(a)g(query)h(the)f(index)i(of)e (a)g(v)m(ariable,)i(and)e(returns)h(one)f(bit)h(as)f(an)g(answ)o(er.)23 b(This)75 679 y(bit)18 b(can)g(b)q(e)g(view)o(ed)h(as)e(a)h(Bo)q(olean) g(assignmen)o(t)g(to)f(the)h(v)m(ariable.)28 b(The)18 b(v)o(eri\014cation)h(pro)q(cedure)f(is)75 736 y(as)d(follo)o(ws.)22 b(The)17 b(v)o(eri\014er)f(selects)h(an)e(index)j(of)d(a)h(clause)g(at) g(random,)f(sends)h(it)g(to)g(the)g(\014rst)f(pro)o(v)o(er,)75 792 y(and)h(selects)g(a)f(random)g(v)m(ariable)i(in)f(the)f(clause,)h (and)g(sends)g(its)f(index)i(to)e(the)g(second)h(pro)o(v)o(er.)k(The)75 849 y(v)o(eri\014er)14 b(in)o(terprets)g(the)g(reply)h(of)e(the)h (\014rst)f(pro)o(v)o(er)g(as)g(an)h(assignmen)o(t)g(to)f(the)g(three)h (v)m(ariables)h(in)g(the)75 905 y(clause,)k(and)e(the)h(reply)g(of)f (the)h(second)g(pro)o(v)o(er)f(as)g(an)g(assignmen)o(t)h(to)e(the)i(v)m (ariable)h(selected)g(from)75 962 y(the)c(clause.)21 b(The)15 b(v)o(eri\014er)h(accepts)g(if)f(the)h(follo)o(wing)f(t)o(w)o (o)f(conditions)j(hold:)131 1068 y(1.)22 b Fg(Clause)17 b(c)o(hec)o(k:)i Fp(the)d(assignmen)o(t)f(sen)o(t)g(b)o(y)g(the)g (\014rst)g(pro)o(v)o(er)f(satis\014es)i(the)f(clause.)131 1162 y(2.)22 b Fg(Consistency)g(c)o(hec)o(k:)27 b Fp(the)19 b(assignmen)o(t)g(sen)o(t)g(b)o(y)h(the)f(second)h(pro)o(v)o(er)e(is)i (iden)o(tical)h(to)e(the)189 1218 y(assignmen)o(t)c(for)f(the)i(same)e (v)m(ariable)j(sen)o(t)e(b)o(y)g(the)g(\014rst)g(pro)o(v)o(er.)75 1324 y Fg(Prop)q(osition)k(3)j Fk(L)n(et)16 b Fo(\036)h Fk(b)n(e)f(a)h(3CNF-5)g(formula)g(and)g(let)f Fo(\017)h Fk(b)n(e)f(the)h(fr)n(action)g(of)f(unsatis\014e)n(d)g(clauses)75 1381 y(in)g(the)i(assignment)d(to)i(the)h(variables)e(that)i (satis\014es)d(the)i(lar)n(gest)g(numb)n(er)f(of)h(clauses.)23 b(Then)16 b(under)75 1437 y(the)f(optimal)g(str)n(ate)n(gy)g(of)g(the)g (pr)n(overs,)g(the)g(veri\014er)f(in)g(the)h(ab)n(ove)g(two)g(pr)n (over)h(pr)n(o)n(of)f(system)f(ac)n(c)n(epts)75 1494 y(with)j(pr)n(ob)n(ability)f Fp(\(1)9 b Fn(\000)i Fo(\017=)p Fp(3\))p Fk(.)146 1600 y Fg(Pro)q(of:)19 b Fp(T)l(o)c(see)g(that)g (regardless)g(of)g(the)g(strategy)f(of)g(the)i(pro)o(v)o(ers)e(the)h (acceptance)h(probabilit)o(y)75 1657 y(is)h(at)f(most)f(\(1)c Fn(\000)g Fo(\017=)p Fp(3\),)16 b(observ)o(e)g(that)g(the)g(strategy)f (of)h(the)h(second)g(pro)o(v)o(er)e(de\014nes)j(an)e(assignmen)o(t)75 1713 y Fo(\037)i Fp(to)f(the)h(v)m(ariables)h(of)e Fo(\036)p Fp(.)27 b(When)18 b(the)g(v)o(eri\014er)g(selects)g(a)f(clause)i(that)e (is)h(not)f(satis\014ed)h(b)o(y)g Fo(\037)g Fp(\(this)75 1769 y(happ)q(ens)d(with)g(probabilit)o(y)g(at)f(least)g Fo(\017)p Fp(\),)g(then)h(in)g(order)f(to)g(pass)g(the)g(clause)h(c)o (hec)o(k,)g(the)f(\014rst)g(pro)o(v)o(er)75 1826 y(m)o(ust)19 b(set)g(at)f(least)i(one)f(of)g(the)h(three)f(v)m(ariables)i (di\013eren)o(tly)f(from)e Fo(\037)p Fp(,)j(and)e(then)h(the)f (consistency)75 1882 y(c)o(hec)o(k)c(fails)h(with)g(probabilit)o(y)g (at)f(least)g(1)p Fo(=)p Fp(3.)146 1939 y(A)f(strategy)g(that)g(guaran) o(tees)g(acceptance)h(probabilit)o(y)h(of)e(at)g(least)h(\(1)8 b Fn(\000)i Fo(\017=)p Fp(3\))k(is)h(to)f(let)i Fo(\037)f Fp(b)q(e)g(an)75 1995 y(assignmen)o(t)i(that)g(satis\014es)h(a)f(\(1)11 b Fn(\000)h Fo(\017)p Fp(\)-fraction)17 b(of)g(the)h(clauses,)g(and)g (to)f(ha)o(v)o(e)g(the)g(\014rst)h(pro)o(v)o(er)e(set)75 2052 y(exactly)g(one)f(v)m(ariable)h(di\013eren)o(tly)h(from)d Fo(\037)i Fp(for)e(clauses)i(not)f(satis\014ed)h(b)o(y)f Fo(\037)p Fp(.)58 b Fe(2)146 2108 y Fp(The)14 b(probabilit)o(y)i(of)e (accepting)i(a)e(false)h(input)g(is)h(kno)o(wn)e(as)g(the)h Fk(err)n(or)g Fp(of)f(the)g(t)o(w)o(o)g(pro)o(v)o(er)f(pro)q(of)75 2165 y(system.)18 b(F)l(or)12 b(the)g(ab)q(o)o(v)o(e)f(t)o(w)o(o-pro)o (v)o(er)f(pro)q(of)h(system,)h(the)g(error)f(ma)o(y)h(b)q(e)g(as)g (high)g(as)g(1)s Fn(\000)s Fo(\017=)p Fp(3.)19 b(W)l(e)12 b(no)o(w)75 2221 y(mo)q(dify)17 b(our)f(construction)h(so)g(as)f(to)g (substan)o(tially)h(lo)o(w)o(er)f(the)h(error.)23 b(This)18 b(is)f(done)g(via)f(a)h(metho)q(d)75 2278 y(kno)o(wn)d(as)g Fk(p)n(ar)n(al)r(lel)h(r)n(ep)n(etition)p Fp(.)k(Rather)14 b(than)h(c)o(ho)q(ose)f(at)g(random)g(one)g(clause,)i(the)e(v)o (eri\014er)h(c)o(ho)q(oses)75 2334 y(at)f(random)f Fo(`)h Fp(clauses)h(\(the)f(v)m(alue)i(of)e Fo(`)g Fp(will)i(b)q(e)e (determined)i(later\).)j(The)c(indices)h(of)e(these)g Fo(`)g Fp(clauses)75 2391 y(are)i(sen)o(t)h(to)f(the)h(\014rst)f(pro)o (v)o(er,)g(who)h(no)o(w)f(replies)j(with)e(a)f(sequence)i(of)f(3)p Fo(`)f Fp(bits.)25 b(F)l(rom)16 b(eac)o(h)h(clause)75 2447 y(the)f(v)o(eri\014er)g(c)o(ho)q(oses)g(at)f(random)h(one)g(v)m (ariable,)h(and)f(sends)g(the)g(indices)i(of)d(the)h Fo(`)g Fp(v)m(ariables)h(to)e(the)964 2581 y(9)p eop %%Page: 10 10 10 9 bop 75 311 a Fp(second)17 b(pro)o(v)o(er.)k(The)16 b(second)h(pro)o(v)o(er)e(replies)j(with)e(a)g(sequence)h(of)e Fo(`)h Fp(bits.)23 b(The)16 b(v)o(eri\014er)h(in)o(terprets)75 368 y(the)c(sequence)h(of)e(bits)h(sen)o(t)f(b)o(y)h(the)f(\014rst)h (pro)o(v)o(er)f(as)g(an)g(assignmen)o(t)h(to)f(the)h(3)p Fo(`)f Fp(v)m(ariables)i(that)e(app)q(ear)75 424 y(in)i(the)g Fo(`)g Fp(random)f(clauses,)h(and)g(in)o(terprets)g(the)g(sequence)h (of)e(bits)h(sen)o(t)f(b)o(y)h(the)g(second)g(pro)o(v)o(er)f(as)g(an)75 481 y(assignmen)o(t)h(to)f(the)h Fo(`)f Fp(v)m(ariables)i(that)f(w)o (ere)f(queried)i(of)e(the)h(second)h(pro)o(v)o(er.)j(The)c(v)o (eri\014er)h(accepts)e(if)75 537 y(the)h(follo)o(wing)h(t)o(w)o(o)e (conditions)j(hold)f(for)e(ev)o(ery)h(one)h(of)f(the)g Fo(`)g Fp(clauses:)20 b(the)15 b(assignmen)o(t)f(sen)o(t)g(b)o(y)g(the) 75 594 y(\014rst)f(pro)o(v)o(er)h(satis\014es)g(the)f(clause,)i(and)f (the)g(assignmen)o(t)g(sen)o(t)f(b)o(y)h(the)g(second)g(pro)o(v)o(er)g (is)g(iden)o(tical)i(to)75 650 y(the)e(assignmen)o(t)h(for)e(the)i (same)f(v)m(ariable)h(sen)o(t)f(b)o(y)h(the)f(\014rst)g(pro)o(v)o(er.) 19 b(Hence)c(from)e(the)i(p)q(oin)o(t)f(of)g(view)75 707 y(of)k(the)i(v)o(eri\014er,)g(the)f(new)g(pro)q(of)f(system)h(is)g (comp)q(osed)g(of)g Fo(`)g Fp(parallel)h(rep)q(etitions)g(of)f(the)g (original)75 763 y(pro)q(of)d(system,)g(where)h(eac)o(h)g(rep)q (etition)h(uses)f(fresh)f(random)h(bits.)24 b(As)17 b(the)f(v)o (eri\014er)i(accepts)e(in)i(the)75 819 y(mo)q(di\014ed)f(pro)q(of)f (system)g(only)g(if)g(all)h(rep)q(etitions)h(are)d(accepting,)i(it)f (is)h(natural)f(to)f(exp)q(ect)i(that)e(the)75 876 y(error)c(of)g(the)g (mo)q(di\014ed)i(pro)q(of)e(system)f(will)j(b)q(e)f(at)f(most)g(\(1)r Fn(\000)r Fo(\017=)p Fp(3\))1210 859 y Fl(`)1226 876 y Fp(.)19 b(Unfortunately)l(,)12 b(this)f(is)h(in)g(general)75 932 y(not)17 b(true,)h(due)g(to)f(subtle)i(reasons)e(that)g(are)g(b)q (est)h(explained)i(b)o(y)d(explicit)j(coun)o(ter)d(examples)i([13)o(].) 75 989 y(Ho)o(w)o(ev)o(er,)e(it)h(is)h(true)f(that)f(parallel)i(rep)q (etition)h(reduces)e(the)g(error)g(at)f(an)h(exp)q(onen)o(tial)h(rate.) 28 b(The)75 1045 y(follo)o(wing)16 b(theorem)f(w)o(as)f(pro)o(v)o(en)h (b)o(y)g(Raz)h([30)o(].)75 1140 y Fg(Theorem)f(4)23 b Fk(If)18 b(a)h(one)g(r)n(ound)g(two)g(pr)n(over)g(pr)n(o)n(of)g(system) f(is)h(r)n(ep)n(e)n(ate)n(d)f Fo(`)h Fk(times)f(indep)n(endently)g(in) 75 1196 y(p)n(ar)n(al)r(lel,)e(then)g(the)g(err)n(or)h(is)f Fp(2)612 1180 y Fy(\000)p Fl(c`)671 1196 y Fk(,)g(wher)n(e)h Fo(c)12 b(>)i Fp(0)i Fk(is)g(a)g(c)n(onstant)g(that)h(dep)n(ends)e (only)h(on)g(the)h(err)n(or)g(of)75 1253 y(the)h(original)e(pr)n(o)n (of)i(system)f(\(assuming)f(this)h(err)n(or)h(was)f(less)f(than)h (one\))g(and)g(on)g(the)h(length)e(of)i(the)75 1309 y(answers)d(of)i (the)f(pr)n(overs)h(in)e(the)i(original)f(pr)n(o)n(of)g(system.)146 1404 y Fp(As)i(the)g(error)f(in)i(our)f(original)h(t)o(w)o(o)e(pro)o(v) o(er)h(pro)q(of)f(system)h(w)o(as)f(a)h(constan)o(t)f(\(1)12 b Fn(\000)g Fo(\017=)p Fp(3\))18 b(that)f(is)75 1460 y(indep)q(enden)o(t)f(of)e Fo(n)p Fp(,)g(and)h(the)f(answ)o(er)f (length)i(w)o(as)e(also)h(a)g(constan)o(t)f(\(three)h(for)g(the)g (\014rst)g(pro)o(v)o(er,)f(one)75 1517 y(for)h(the)g(second)h(pro)o(v)o (er\),)e(it)h(follo)o(ws)g(from)g(Theorem)g(4)g(that)g(the)g(error)f (of)h(our)g(mo)q(di\014ed)i(t)o(w)o(o)d(pro)o(v)o(er)75 1573 y(pro)q(of)i(system)g(is)g(at)g(most)f(2)580 1557 y Fy(\000)p Fl(c`)639 1573 y Fp(,)h(for)f(some)h(univ)o(ersal)i (constan)o(t)d Fo(c)p Fp(.)75 1693 y Fh(2.3)56 b(The)18 b Fd(k)r Fh(-pro)n(v)n(er)g(pro)r(of)h(system)75 1779 y Fp(W)l(e)e(are)g(no)o(w)g(ready)g(to)f(describ)q(e)j(our)e Fo(k)h Fp(pro)o(v)o(er)e(pro)q(of)h(system)g(for)f(MAX)h(3SA)l(T-5)g (whic)o(h)h(has)f(the)75 1836 y(nonstandard)e(feature)g(of)g(t)o(w)o(o) e(di\013eren)o(t)j(acceptance)g(predicates.)k(F)l(or)15 b(reasons)f(of)h(e\016ciency)i(in)f(the)75 1892 y(construction,)i(w)o (e)f(consider)h(a)f(binary)h(co)q(de)g(that)e(con)o(tains)i Fo(k)g Fp(co)q(de)g(w)o(ords,)e(eac)o(h)i(of)f(length)h Fo(`)f Fp(and)75 1949 y(w)o(eigh)o(t)d Fo(`=)p Fp(2,)g(and)g(Hamming)h (distance)g(at)e(least)i Fo(`=)p Fp(3)e(b)q(et)o(w)o(een)i(an)o(y)f(t)o (w)o(o)f(co)q(de)i(w)o(ords.)k(F)l(or)13 b(our)i(main)75 2005 y(result)k(w)o(e)g(shall)h(c)o(ho)q(ose)f Fo(`)g Fp(=)g(\002\(log)8 b(log)h Fo(n)p Fp(\))19 b(and)g Fo(k)h Fp(an)f(arbitrarily)g(large)g(constan)o(t.)30 b(In)20 b(this)f(case,)75 2061 y(assuming)f(w.l.o.g.)26 b(that)17 b Fo(`)h Fp(is)g(an)f(exact)h(p)q(o)o(w)o(er)f(of)g(2)h(and)g(that)f Fo(k)g(<)h(`)p Fp(,)f(the)h(ro)o(ws)f(of)g(a)h(Hadamard)75 2118 y(matrix)e(giv)o(e)h(a)f(co)q(de)i(with)e(the)h(desired)h(prop)q (erties)f(\(in)g(fact,)f(with)h(Hamming)g(distance)g Fo(`=)p Fp(2\).)24 b(F)l(or)75 2174 y(re\014ned)19 b(results)g(\(see)f (Section)i(6\),)e(it)g(is)h(useful)h(to)e(c)o(ho)q(ose)g Fo(k)h(>)f(`)p Fp(,)h(and)g(use)f(some)g(other)g(standard)75 2231 y(co)q(de)e(instead)g(of)e(the)i(Hadamard)e(co)q(de.)146 2287 y(In)h(our)g Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)g(system,)h(the)g (v)o(eri\014er)g(selects)h Fo(`)e Fp(clauses)i(uniformly)g(and)f(indep) q(enden)o(tly)75 2344 y(at)k(random.)31 b(Call)21 b(these)e(clauses)h Fo(C)741 2351 y Fm(1)760 2344 y Fo(;)8 b(:)g(:)g(:)d(;)j(C)895 2351 y Fl(`)910 2344 y Fp(.)33 b(F)l(rom)18 b(eac)o(h)h(clause,)i(the)f (v)o(eri\014er)g(selects)g(a)f(single)75 2400 y(v)m(ariable)g (uniformly)f(and)f(indep)q(enden)o(tly)k(at)16 b(random.)26 b(These)18 b(are)f(called)h(the)g Fk(distinguishe)n(d)e Fp(v)m(ari-)75 2457 y(ables)i Fo(x)217 2464 y Fm(1)236 2457 y Fo(;)8 b(:)g(:)g(:)d(;)j(x)364 2464 y Fl(`)380 2457 y Fp(.)25 b(\(So)16 b(far,)g(this)i(is)f(iden)o(tical)i(to)d(the)h (mo)q(di\014ed)h(t)o(w)o(o)e(pro)o(v)o(er)g(pro)q(of)h(system.\))24 b(With)952 2581 y(10)p eop %%Page: 11 11 11 10 bop 75 311 a Fp(eac)o(h)15 b(pro)o(v)o(er)f(the)g(v)o(eri\014er)i (asso)q(ciates)e(a)h(co)q(de)g(w)o(ord.)k(Pro)o(v)o(er)13 b Fo(P)1200 318 y Fl(i)1229 311 y Fp(receiv)o(es)j Fo(C)1429 318 y Fl(j)1461 311 y Fp(for)e(those)h(co)q(ordinates)75 368 y Fo(j)k Fp(in)f(its)f(co)q(de)g(w)o(ord)g(that)f(ha)o(v)o(e)g(the) h(bit)g(1,)g(and)g Fo(x)981 375 y Fl(j)1016 368 y Fp(for)f(those)h(co)q (ordinates)g(in)h(its)f(co)q(de)g(w)o(ord)g(that)75 424 y(ha)o(v)o(e)g(the)h(bit)g(0.)26 b(Eac)o(h)18 b(pro)o(v)o(er)f(replies) i(with)f(a)f(string)g(of)h(2)p Fo(`)f Fp(bits.)27 b(This)18 b(string)g(is)g(in)o(terpreted)g(b)o(y)75 481 y(the)c(v)o(eri\014er)g (as)g(an)g(assignmen)o(t)g(to)f(all)i(the)f(v)m(ariables)h(that)e(the)h (pro)o(v)o(er)f(receiv)o(ed)i(\()p Fo(`=)p Fp(2)e(distinguished)75 537 y(v)m(ariables)19 b(plus)f(three)g(v)m(ariables)h(in)f(eac)o(h)g (of)f(the)h Fo(`=)p Fp(2)f(clauses\).)27 b(F)l(or)17 b(simplicit)o(y)j(in)e(describing)i(the)75 594 y(acceptance)14 b(predicate,)g(w)o(e)f(assume)g(that)g(for)g(eac)o(h)g(of)g(the)g Fo(`=)p Fp(2)g(clauses)h(receiv)o(ed)h(b)o(y)e(the)g(pro)o(v)o(er,)g (the)75 650 y(corresp)q(onding)20 b(bits)f(in)g(the)g(pro)o(v)o(er's)f (answ)o(er)g(enco)q(de)h(a)g(satisfying)g(assignmen)o(t)f(for)g(that)g (clause.)75 707 y(\(This)h(assumption)g(is)h(without)f(loss)g(of)f (generalit)o(y)l(,)i(as)f(whenev)o(er)g(it)g(do)q(es)h(not)e(hold,)i (the)f(v)o(eri\014er)75 763 y(ma)o(y)d(simply)j(complemen)o(t)e(the)g (\014rst)g(of)g(the)g(three)g(bits)h(that)e(corresp)q(ond)h(to)g(the)g (v)m(ariables)h(of)f(the)75 819 y(unsatis\014ed)h(clause,)g(thereb)o(y) e(obtaining)i(a)f(canonical)h(reply)f(that)f(satis\014es)h(the)g (clause.\))25 b(Hence)18 b(in)75 876 y(this)g Fo(k)q Fp(-pro)o(v)o(er)e(pro)q(of)h(system,)g(the)g(acceptance)h(predicates)g (need)g(not)f(in)o(v)o(olv)o(e)h(clause)g(c)o(hec)o(ks,)g(and)75 932 y(will)f(only)f(in)o(v)o(olv)o(e)f(consistency)i(c)o(hec)o(ks.)146 989 y(Observ)o(e)11 b(that)f(the)h(answ)o(er)f(of)g(a)h(pro)o(v)o(er)f (induces)i(an)f(assignmen)o(t)g(to)f(the)h(distinguished)i(v)m (ariables.)75 1045 y(\(Namely)l(,)f(if)f(on)g(the)h(resp)q(ectiv)o(e)g (co)q(ordinate)f(the)g(answ)o(er)g(giv)o(es)g(an)g(assignmen)o(t)g(to)f (all)i(three)g(v)m(ariables)75 1102 y(in)23 b(the)f(clause)i(rather)d (than)h(an)h(assignmen)o(t)f(just)g(to)f(the)i(distinguished)h(v)m (ariable,)h(remo)o(v)o(e)d(the)75 1158 y(assignmen)o(t)c(for)f(the)h (other)g(t)o(w)o(o)e(v)m(ariables.)30 b(If)18 b(the)g(same)f(v)m (ariable)j(app)q(ears)e(sev)o(eral)g(times)g(in)h(the)75 1215 y(sequence)e(of)f(distinguished)j(v)m(ariables,)f(di\013eren)o(t)e (o)q(ccurrences)i(of)d(the)i(same)f(v)m(ariable)h(ma)o(y)f(receiv)o(e) 75 1271 y(di\013eren)o(t)e(assignmen)o(ts.\))k(W)l(e)c(sa)o(y)e(that)h (the)g(answ)o(ers)g(of)g(t)o(w)o(o)f(pro)o(v)o(ers)g(are)h Fk(c)n(onsistent)f Fp(if)i(the)f(induced)75 1328 y(assignmen)o(ts)i(to) g(the)g(distinguished)j(v)m(ariables)e(is)g(iden)o(tical.)146 1384 y(W)l(e)f(can)g(no)o(w)g(describ)q(e)i(our)e(acceptance)g (predicates:)143 1485 y Fn(\017)23 b Fg(W)l(eak)17 b(acceptance)i (predicate:)i Fp(at)14 b(least)i(one)f(pair)g(of)g(pro)o(v)o(ers)g(is)g (consisten)o(t.)143 1577 y Fn(\017)23 b Fg(Strong)17 b(acceptance)j(predicate:)g Fp(ev)o(ery)15 b(pair)h(of)f(pro)o(v)o(ers) f(is)i(consisten)o(t.)75 1678 y Fg(Lemm)o(a)e(5)23 b Fk(Consider)16 b(the)i Fo(k)q Fk(-pr)n(over)f(pr)n(o)n(of)g(system)g (de\014ne)n(d)f(ab)n(ove)h(and)g(a)g(3CNF-5)g(formula)g Fo(\036)p Fk(.)24 b(If)75 1735 y Fo(\036)18 b Fk(is)f(satis\014able,)f (then)i(the)f(pr)n(overs)h(have)g(a)g(str)n(ate)n(gy)f(that)h(c)n (auses)f(the)h(veri\014er)f(to)h(always)f(str)n(ongly)75 1791 y(ac)n(c)n(ept.)k(If)16 b(at)h(most)g(a)g Fp(\(1)9 b Fn(\000)i Fo(\017)p Fp(\))p Fk(-fr)n(action)17 b(of)g(the)f(clauses)g (in)g Fo(\036)h Fk(ar)n(e)f(simultane)n(ously)g(satis\014able,)f(then) 75 1848 y(the)i(veri\014er)f(we)n(akly)g(ac)n(c)n(epts)g(with)g(pr)n (ob)n(ability)h(at)f(most)h Fo(k)1114 1831 y Fm(2)1144 1848 y Fn(\001)10 b Fp(2)1190 1831 y Fy(\000)p Fl(c`)1249 1848 y Fk(,)16 b(wher)n(e)h Fo(c)c(>)g Fp(0)j Fk(is)g(a)h(c)n(onstant)e (that)75 1904 y(dep)n(ends)h(only)f(on)h Fo(\017)p Fk(.)146 2005 y Fg(Pro)q(of:)k Fp(If)c Fo(\036)f Fp(is)h(satis\014able,)g(then)g (the)g(pro)o(v)o(ers)e(can)i(base)g(their)g(answ)o(ers)f(on)g(a)g (canonical)i(satis-)75 2061 y(fying)e(assignmen)o(t)f(\(e.g.,)f(on)h (the)h(lexicographically)i(\014rst)d(suc)o(h)h(assignmen)o(t\).)k(Then) c(all)g(clauses)g(are)75 2118 y(satis\014ed)h(and)f(the)g(answ)o(ers)g (of)g(all)h(pro)o(v)o(ers)e(are)h(m)o(utually)h(consisten)o(t.)146 2174 y(W)l(e)10 b(no)o(w)g(consider)i(the)f(case)g(in)g(whic)o(h)h (only)f(a)f(\(1)q Fn(\000)q Fo(\017)p Fp(\)-fraction)h(of)f(the)h (clauses)g(of)f Fo(\036)h Fp(are)f(satis\014able.)75 2231 y(Assume)17 b(that)f(the)g(v)o(eri\014er)i(w)o(eakly)e(accepts)h (with)g(probabilit)o(y)h(at)e(least)g Fo(\016)r Fp(.)24 b(Then)18 b(with)f(resp)q(ect)g(to)75 2287 y(t)o(w)o(o)f(of)g(the)h (pro)o(v)o(ers,)g(the)g(v)o(eri\014er)g(accepts)h(with)f(probabilit)o (y)h(at)f(least)g Fo(\016)r(=k)1440 2271 y Fm(2)1459 2287 y Fp(.)25 b(By)18 b(the)f(prop)q(ert)o(y)f(of)75 2344 y(the)f(co)q(de,)g(there)f(are)g(at)g(least)h Fo(`=)p Fp(6)f(co)q(ordinates)h(on)f(whic)o(h)i(one)e(of)g(these)h(pro)o(v)o (ers)f(receiv)o(es)h(a)f(clause,)75 2400 y(and)i(the)h(other)f(pro)o(v) o(er)f(receiv)o(es)i(a)f(v)m(ariable)h(in)h(this)e(clause.)24 b(Fix)16 b(the)h(question)g(pairs)f(in)h(the)f(other)75 2457 y(5)p Fo(`=)p Fp(6)g(co)q(ordinates)i(in)f(a)g(w)o(a)o(y)f(that)g (maximizes)j(the)e(acceptance)g(probabilit)o(y)l(,)i(whic)o(h)f(b)o(y)f (a)o(v)o(eraging)952 2581 y(11)p eop %%Page: 12 12 12 11 bop 75 311 a Fp(remains)16 b(at)g(least)g Fo(\016)r(=k)479 295 y Fm(2)498 311 y Fp(.)23 b(No)o(w)15 b(omit)h(the)g(questions)h(on) f(these)g(5)p Fo(`=)p Fp(6)f(co)q(ordinates)i(\(the)f(pro)o(v)o(ers)f (can)75 368 y(reconstruct)j(them)g(an)o(yw)o(a)o(y\).)27 b(It)18 b(follo)o(ws)g(that)g(the)g(t)o(w)o(o)f(pro)o(v)o(ers)g(ha)o(v) o(e)h(a)g(strategy)e(that)i(succeeds)75 424 y(with)h(probabilit)o(y)g (at)f(least)g Fo(\016)r(=k)655 408 y Fm(2)693 424 y Fp(on)g Fo(`=)p Fp(6)f(parallel)j(rep)q(etitions)g(of)d(the)i(original)g(t)o(w) o(o)e(pro)o(v)o(er)g(pro)q(of)75 481 y(system.)i(F)l(rom)c(Theorem)g (4,)f Fo(\016)r(=k)675 464 y Fm(2)708 481 y Fo(<)e Fp(2)778 464 y Fy(\000)p Fl(c`)837 481 y Fp(.)58 b Fe(2)75 624 y Fq(3)69 b(Construction)23 b(of)g(partition)f(systems)75 725 y Fg(De\014nition)d(1)k Fk(A)16 b Fp(partition)g(system)f Fo(B)r Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))14 b Fk(has)i(the)h(fol)r(lowing)f(pr)n(op)n(erties.)129 830 y(1.)23 b(Ther)n(e)15 b(is)h(a)h(gr)n(ound)f(set)g Fo(B)j Fk(of)d Fo(m)h Fk(p)n(oints.)129 924 y(2.)23 b(Ther)n(e)15 b(is)h(a)h(c)n(ol)r(le)n(ction)e(of)h Fo(L)g Fk(distinct)g Fp(partitions)g Fo(p)1103 931 y Fm(1)1123 924 y Fo(;)8 b(:)g(:)g(:)d(;)j(p)1248 931 y Fl(L)1273 924 y Fk(.)129 1017 y(3.)23 b(F)m(or)14 b Fp(1)e Fn(\024)h Fo(i)f Fn(\024)h Fo(L)p Fk(,)i(p)n(artition)g Fo(p)699 1024 y Fl(i)727 1017 y Fk(is)f(a)h(c)n(ol)r(le)n(ction)e(of)i Fo(k)h Fk(disjoint)e(subsets)f(of)i Fo(B)i Fk(whose)e(union)f(is)g Fo(B)r Fk(.)129 1111 y(4.)23 b(A)o(ny)17 b(c)n(over)h(of)h(the)g Fo(m)f Fk(p)n(oints)g(by)g(subsets)f(that)i(app)n(e)n(ar)g(in)f(p)n (airwise)g(di\013er)n(ent)g(p)n(artitions)g(r)n(e-)189 1167 y(quir)n(es)d(at)i(le)n(ast)e Fo(d)h Fk(subsets.)75 1272 y Fg(Lemm)o(a)e(6)23 b Fk(F)m(or)13 b(every)g Fo(c)f Fn(\025)h Fp(0)g Fk(and)g Fo(m)h Fk(su\016ciently)e(lar)n(ge)h(ther)n (e)g(is)f(a)i Fp(partition)e(system)h Fo(B)r Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))75 1329 y Fk(whose)16 b(p)n(ar)n(ameters)h(satisfy)e(the)i(fol)r(lowing)f(ine)n(qualities:) 129 1434 y(1.)23 b Fo(L)12 b Fn(')h Fp(\(log)8 b Fo(m)p Fp(\))422 1417 y Fl(c)439 1434 y Fk(.)129 1527 y(2.)23 b Fo(k)17 b Fk(c)n(an)f(b)n(e)f(chosen)h(arbitr)n(arily)h(as)f(long)f (as)h Fo(k)e(<)1067 1509 y Fm(ln)6 b Fl(m)p 1038 1516 126 2 v 1038 1543 a Fm(3)f(ln)h(ln)f Fl(m)1168 1527 y Fk(.)129 1621 y(3.)23 b Fo(d)12 b Fp(=)h(\(1)c Fn(\000)i Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))p Fo(k)j Fp(ln)g Fo(m)p Fk(,)16 b(wher)n(e)h Fo(f)5 b Fp(\()p Fo(k)q Fp(\))12 b Fn(!)h Fp(0)j Fk(as)g Fo(k)e Fn(!)f(1)p Fk(.)146 1726 y(A)f(p)n(artition)g(system)g(with)h(p)n(ar)n(ameters)f(as)h(describ)n (e)n(d)e(ab)n(ove)h(and)h Fo(f)5 b Fp(\()p Fo(k)q Fp(\))12 b(=)h(2)p Fo(=k)g Fk(c)n(an)f(b)n(e)g(c)n(onstructe)n(d)75 1782 y Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\()p Fo(m)310 1766 y Fl(O)q Fm(\(log)s Fl(m)p Fm(\))448 1782 y Fp(\))p Fk(.)146 1887 y Fg(Pro)q(of:)19 b Fp(Consider)d(the)f(follo)o(wing)h(randomized) g(construction)g(for)e Fo(B)r Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\).)146 1944 y Fk(F)m(or)18 b(e)n(ach)i(p)n(oint)f(in)g(the)g(set)g Fo(B)r Fk(,)i(for)f(e)n(ach)f(p)n(artition)g Fo(p)1132 1951 y Fl(i)1146 1944 y Fk(,)h(de)n(cide)f(indep)n(endently)f(at)i(r)n (andom)g(in)75 2000 y(which)d(subset)f(of)g(the)g(p)n(artition)h(to)f (plac)n(e)g(the)h(p)n(oint.)146 2057 y Fp(W)l(e)g(sho)o(w)f(that)h (with)g(high)h(probabilit)o(y)h Fo(d)e Fp(subsets,)g(eac)o(h)g(b)q (elonging)i(to)e(a)g(di\013eren)o(t)g(partition,)75 2113 y(cannot)e(co)o(v)o(er)f(the)g(set)h Fo(B)i Fp(\(for)d(parameters)g(as) g(in)i(the)f(lemma\).)k(Consider)d(a)e(particular)h(c)o(hoice)h(of)e Fo(d)75 2170 y Fp(subsets,)h(no)g(t)o(w)o(o)g(of)f(whic)o(h)j(b)q (elong)f(to)f(the)g(same)g(partition.)21 b(Then)16 b(the)f(probabilit)o (y)i(for)e(a)g(p)q(oin)o(t)h(to)75 2226 y(b)q(e)h(co)o(v)o(ered)f(b)o (y)g(at)g(least)g(one)g(of)g(the)g Fo(d)g Fp(subsets)h(is)f(1)11 b Fn(\000)g Fp(\()1094 2208 y Fl(k)q Fy(\000)p Fm(1)p 1094 2215 65 2 v 1116 2242 a Fl(k)1163 2226 y Fp(\))1181 2210 y Fl(d)1201 2226 y Fp(.)23 b(Using)17 b(\(1)10 b Fn(\000)h Fp(1)p Fo(=k)q Fp(\))1552 2210 y Fl(k)1587 2226 y Fo(>)j(e)1657 2210 y Fy(\000)p Fm(1)p Fy(\000)p Fm(1)p Fl(=k)1803 2226 y Fp(\(for)75 2287 y Fo(k)j Fn(\025)g Fp(2\),)g(and)g(\(1)11 b(+)h(1)p Fo(=k)q Fp(\)\(1)e Fn(\000)i Fp(2)p Fo(=k)q Fp(\))k Fo(<)g Fp(\(1)11 b Fn(\000)h Fp(1)p Fo(=k)q Fp(\),)17 b(this)h(probabilit)o(y)g(is)g(at)f(most)f(1)c Fn(\000)g Fo(m)1655 2271 y Fy(\000)p Fm(1+1)p Fl(=k)1784 2287 y Fp(.)26 b(As)75 2344 y(there)16 b(are)g Fo(m)g Fp(p)q(oin)o(ts,)h(the)f(probabilit)o(y)i(that)e(all)h Fo(m)f Fp(p)q(oin)o(ts)h(are)f(co)o(v)o(ered)g(b)o(y)g(the)g(same)g Fo(d)g Fp(subsets)g(is)75 2400 y(\(1)r Fn(\000)r Fo(m)195 2384 y Fy(\000)p Fm(1+1)p Fl(=k)323 2400 y Fp(\))341 2384 y Fl(m)387 2400 y Fo(<)d(e)456 2384 y Fy(\000)p Fl(m)514 2372 y Fc(1)p Ff(=k)567 2400 y Fp(.)18 b(There)11 b(are)g Fo(k)822 2384 y Fl(d)842 2366 y Fb(\000)861 2380 y Fl(L)864 2416 y(d)885 2366 y Fb(\001)917 2400 y Fo(<)i(L)996 2384 y Fl(d)1027 2400 y Fp(w)o(a)o(ys)d(of)g(c)o(ho)q(osing)i(the)f (subsets)g(\(the)f(inequalit)o(y)75 2457 y(holds)17 b(since)g Fo(d)d(>>)h(k)q Fp(\).)23 b(Substituting)17 b Fo(L)d Fn(')h Fp(\(log)8 b Fo(m)p Fp(\))1007 2440 y Fl(c)1040 2457 y Fp(and)16 b Fo(d)e(<)h(k)9 b Fp(ln)f Fo(m)p Fp(,)16 b(the)g(probabilit)o(y)i(that)d(some)952 2581 y(12)p eop %%Page: 13 13 13 12 bop 75 313 a Fp(collection)17 b(of)d Fo(d)h Fp(subsets)g(co)o(v)o (ers)f(all)i(p)q(oin)o(ts)f(is)g(at)f(most)g(\(log)8 b Fo(m)p Fp(\))1211 296 y Fl(ck)f Fm(ln)f Fl(m)1320 313 y Fo(e)1341 296 y Fy(\000)p Fl(m)1399 284 y Fc(1)p Ff(=k)1452 313 y Fp(.)20 b(F)l(or)14 b Fo(k)g(<)1686 295 y Fm(ln)5 b Fl(m)p 1657 302 126 2 v 1657 328 a Fm(3)g(ln)g(ln)h Fl(m)1802 313 y Fp(and)75 369 y Fo(m)15 b Fp(su\016cien)o(tly)h(large,) f(this)g(probabilit)o(y)i(tends)e(to)f(0,)h(pro)o(ving)g(that)f(the)h (probabilistic)j(construction)75 425 y(w)o(orks.)146 482 y(The)d(randomized)i(construction)f(describ)q(ed)h(ab)q(o)o(v)o(e)e (requires)h(time)g(p)q(olynomial)h(in)g Fo(m)p Fp(,)e(and)g(suc-)75 538 y(ceeds)21 b(with)f(probabilit)o(y)h(at)f(least)g(1)p Fo(=)p Fp(2.)33 b(Exhaustiv)o(ely)21 b(c)o(hec)o(king)g(that)e(the)h (construction)g(indeed)75 595 y(giv)o(es)15 b(a)f(partition)i(system)e (can)h(b)q(e)g(done)g(in)h(time)f(roughly)1136 560 y Fb(\000)1155 575 y Fl(k)q(L)1168 611 y(d)1199 560 y Fb(\001)1230 595 y Fo(<)e(m)1318 578 y Fl(O)q Fm(\(log)5 b Fl(m)p Fm(\))1458 595 y Fp(.)20 b(The)15 b(exp)q(ected)h(n)o(um-)75 651 y(b)q(er)g(of)f(times)h(the)g(randomized)g(construction)g(needs)h (to)e(b)q(e)h(tried)g(un)o(til)h(it)f(succeeds)h(is)f(less)g(than)g(2.) 75 708 y Fe(2)146 764 y Fp(The)11 b(randomized)h(construction)f(can)h (b)q(e)f(replaced)i(b)o(y)e(a)g(deterministic)i(construction)e(using)h (tec)o(h-)75 821 y(niques)i(dev)o(elop)q(ed)h(in)f([27)o(].)k(There,)c (partition)f(systems)f(are)h(called)h Fk(anti-universal)f Fp(sets.)18 b(Theorem)13 b(9)75 877 y(in)g([27)o(])g(sa)o(ys)f(that)f (for)h(an)o(y)h Fo(k)g Fp(one)g(can)g(in)g(time)g(linear)h(in)f Fo(m)g Fp(construct)f(a)g(partition)h(system)f(for)g(whic)o(h)75 934 y Fo(m)h Fp(=)h(\()222 916 y Fl(k)p 200 923 65 2 v 200 949 a(k)q Fy(\000)p Fm(1)269 934 y Fp(\))287 917 y Fl(d)306 934 y Fo(d)330 917 y Fl(O)q Fm(\(log)5 b Fl(d)p Fm(\))465 934 y Fp(log)j Fo(L)p Fp(.)21 b(\(Here)15 b Fo(k)i Fp(is)f(assumed)f(to)g(b)q(e)h(an)g(arbitrary)f(constan)o(t,)f (and)i Fo(m)f Fp(gro)o(ws)f(as)75 990 y(a)f(function)h(of)e Fo(L)h Fp(and)h Fo(d)p Fp(.\))k(Expressing)c(the)f(ratio)g Fo(d=k)g Fp(as)g(a)g(function)h(of)f Fo(m)g Fp(one)g(gets)f(\(1)6 b Fn(\000)g Fo(f)f Fp(\()p Fo(k)q Fp(\)\))j(ln)f Fo(m)p Fp(,)75 1046 y(where)15 b Fo(f)5 b Fp(\()p Fo(k)q Fp(\))13 b Fn(!)g Fp(0)h(as)h Fo(k)f Fn(!)f(1)p Fp(,)i(pro)o(vided)h(that)e Fo(d)h Fp(is)g(su\016cien)o(tly)i(large)e(as)f(a)h(function)h(of)f Fo(k)q Fp(,)f(and)i Fo(L)e Fp(is)75 1103 y(b)q(ounded)j(b)o(y)f(a)f(p)q (olynomial)i(in)g Fo(d)p Fp(.)k(This)16 b(will)h(hold)g(when)f(w)o(e)f (use)h(partition)g(systems)g(in)g(Section)h(4.)75 1159 y(\(The)h(reader)f(ma)o(y)g(use)h(the)g(follo)o(wing)g(table)g(to)f (translate)g(from)g(our)h(notation)f(to)g(that)g(of)g([27)o(]:)24 b(a)75 1216 y(p)q(oin)o(t)16 b(in)g(set)f Fo(B)j Fn(!)d Fp(a)g(function)h Fo(h)f Fp(in)h(collection)h Fo(H)t Fp(,)e Fo(m)d Fn(!)h(j)p Fo(H)t Fn(j)p Fp(,)h Fo(L)e Fn(!)i Fo(n)p Fp(,)h Fo(k)e Fn(!)g Fo(b)p Fp(,)i Fo(d)d Fn(!)h Fo(k)q Fp(.\))75 1359 y Fq(4)69 b(The)23 b(reduction)f(to)h(set) f(co)n(v)n(er)75 1461 y Fp(Our)16 b(reduction)g(extends)f(that)g(of)g (Lund)h(and)f(Y)l(annak)m(akis)h([26].)146 1517 y(The)g(v)o(eri\014er)h (of)f(the)h Fo(k)q Fp(-pro)o(v)o(er)f(pro)q(of)g(system)g(of)g(Section) h(2.3)e(uses)i(its)g(randomness,)f(whic)o(h)h(w)o(e)75 1573 y(assume)g(that)f(is)i(giv)o(en)f(in)h(form)f(of)f(a)h(random)g (string)g Fo(r)q Fp(,)f(to)h(select)h Fo(`)f Fp(clauses)g(and)h(a)e (distinguished)75 1630 y(v)m(ariable)f(in)f(eac)o(h)f(clause.)20 b(W)l(e)14 b(call)g(these)f Fo(`)h Fp(distinguished)h(v)m(ariables)g (the)e Fk(se)n(quenc)n(e)g(of)i(distinguishe)n(d)75 1686 y(variables)p Fp(.)21 b(The)16 b(length)h(of)f(the)f(random)h(string)g (is)g(\(log)8 b(5)p Fo(n=)p Fp(3)i(+)h(log)d(3\))p Fo(`)13 b Fp(=)i Fo(`)8 b Fp(log)f(5)p Fo(n)p Fp(.)22 b(Let)16 b Fo(R)e Fp(=)g(\(5)p Fo(n)p Fp(\))1859 1670 y Fl(`)75 1743 y Fp(denote)19 b(the)g(n)o(um)o(b)q(er)g(of)g(p)q(ossible)h (random)f(strings)g(for)f(the)h(v)o(eri\014er.)31 b(With)20 b(eac)o(h)f(random)f(string)75 1799 y Fo(r)q Fp(,)i(w)o(e)f(asso)q (ciate)g(a)g(distinct)h(partition)g(system)f Fo(B)989 1806 y Fl(r)1008 1799 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))16 b(as)j(in)h(Lemma)g(6,)f(where)h Fo(L)f Fp(=)h(2)1846 1783 y Fl(`)1862 1799 y Fp(,)75 1856 y Fo(m)13 b Fp(=)g Fo(n)203 1839 y Fm(\002\()p Fl(`)p Fm(\))274 1856 y Fp(,)h(and)f Fo(d)g Fp(=)g(\(1)7 b Fn(\000)g Fo(f)e Fp(\()p Fo(k)q Fp(\)\))p Fo(k)i Fp(ln)h Fo(m)p Fp(.)19 b(\(Altogether)14 b(there)f(are)g Fo(N)18 b Fp(=)12 b Fo(mR)i Fp(p)q(oin)o(ts)g(in)g(our) f(set)h(co)o(v)o(er)75 1912 y(problem.\))25 b(Eac)o(h)16 b(of)h(the)f Fo(L)h Fp(partitions)g(is)g(lab)q(eled)i(b)o(y)e(an)f Fo(`)p Fp(-bit)i(string)e Fo(p)p Fp(,)h(that)f(corresp)q(onds)h(to)f (an)75 1969 y(assignmen)o(t)d(to)g(the)h(resp)q(ectiv)o(e)g(sequence)h (of)e(distinguished)j(v)m(ariables.)21 b(Eac)o(h)13 b(subset)h(in)g(a)g (partition)75 2025 y(is)20 b(lab)q(eled)i(b)o(y)d(a)g(unique)i(pro)o(v) o(er)e Fo(i)p Fp(.)33 b(W)l(e)19 b(let)h Fo(B)r Fp(\()p Fo(r)o(;)8 b(j;)g(i)p Fp(\))17 b(denote)j(the)g Fo(i)p Fp(th)f(subset)g(of)g(partition)h Fo(j)i Fp(in)75 2082 y(partition)14 b(system)g Fo(r)q Fp(.)19 b(With)14 b(eac)o(h)g (question-answ)o(er)g(pair)h(\()p Fo(q)r(;)8 b(a)p Fp(\))k(of)h(pro)o (v)o(er)h Fo(P)1441 2089 y Fl(i)1455 2082 y Fp(,)g(where)g(1)e Fn(\024)h Fo(i)f Fn(\024)h Fo(k)q Fp(,)h(w)o(e)75 2138 y(asso)q(ciate)g(a)g(subset)g Fo(S)468 2147 y Fm(\()p Fl(q)q(;a;i)p Fm(\))579 2138 y Fp(as)g(follo)o(ws.)19 b(\(Remark:)g(the)c(notation)e Fo(S)1292 2147 y Fm(\()p Fl(q)q(;a;i)p Fm(\))1403 2138 y Fp(is)i(somewhat)e(redundan)o(t,)75 2194 y(but)g(is)g(used)h(for)e(clarit)o(y)l(.)19 b(The)13 b(index)h Fo(i)f Fp(of)f(the)h(pro)o(v)o(er)f(can)h(b)q(e)g(deduced)i (from)d(the)g(syn)o(tax)g(of)h(\()p Fo(q)r(;)8 b(a)p Fp(\))j(b)o(y)75 2251 y(observing)17 b(whic)o(h)g(co)q(ordinates)g(ha)o (v)o(e)f(clauses)i(and)f(whic)o(h)g(ha)o(v)o(e)f(v)m(ariables.\))25 b(W)l(e)17 b(use)g(the)f(notation)75 2307 y(\()p Fo(q)r(;)8 b(i)p Fp(\))16 b Fn(2)i Fo(r)h Fp(to)f(sa)o(y)f(that)h(on)g(random)g (string)h Fo(r)q Fp(,)f(pro)o(v)o(er)g Fo(P)1111 2314 y Fl(i)1143 2307 y Fp(receiv)o(es)h(question)g Fo(q)r Fp(.)29 b(F)l(or)18 b Fo(r)h Fp(suc)o(h)g(that)75 2364 y(\()p Fo(q)r(;)8 b(i)p Fp(\))13 b Fn(2)i Fo(r)q Fp(,)i(consider)g(the) g(induced)h(sequence)g(of)e(distinguished)j(v)m(ariables,)f(and)f (extract)f(from)f Fo(a)i Fp(on)75 2420 y(a)d(co)q(ordinate)g(b)o(y)g (co)q(ordinate)h(basis)f(an)g(assignmen)o(t)g Fo(a)1048 2427 y Fl(r)1081 2420 y Fp(to)f(this)i(sequence)g(of)f(v)m(ariables.)20 b(One)15 b(of)f(the)952 2581 y(13)p eop %%Page: 14 14 14 13 bop 75 311 a Fp(partitions)18 b(of)f(partition)h(system)g Fo(B)719 318 y Fl(r)738 311 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))14 b(has)k(lab)q(el)h Fo(a)1191 318 y Fl(r)1210 311 y Fp(.)28 b(The)18 b(subset)g Fo(S)1517 321 y Fm(\()p Fl(q)q(;a;i)p Fm(\))1631 311 y Fp(con)o(tains)g(the)75 368 y(p)q(oin)o(ts)e(of)e(subset)i Fo(B)r Fp(\()p Fo(r)o(;)8 b(a)522 375 y Fl(r)540 368 y Fo(;)g(i)p Fp(\),)13 b(for)i(all)h Fo(r)g Fp(with)f(\()p Fo(q)r(;)8 b(i)p Fp(\))j Fn(2)i Fo(r)q Fp(.)146 424 y(Let)21 b Fo(Q)h Fp(denote)g(the)g(n)o(um)o(b)q (er)g(of)f(p)q(ossible)i(di\013eren)o(t)f(questions)g(that)f(a)h(pro)o (v)o(er)e(ma)o(y)h(receiv)o(e.)75 481 y(A)d(question)h(to)e(a)g(single) j(pro)o(v)o(er)d(includes)j Fo(`=)p Fp(2)d(v)m(ariables,)j(for)d(whic)o (h)i(there)f(are)g Fo(n)1576 464 y Fl(`=)p Fm(2)1646 481 y Fp(p)q(ossibilities)75 537 y(\(with)f(rep)q(etition\),)i(and)f Fo(`=)p Fp(2)f(clauses,)h(for)f(whic)o(h)h(there)g(are)f(\(5)p Fo(n=)p Fp(3\))1313 521 y Fl(`=)p Fm(2)1381 537 y Fp(p)q(ossibilities.) 30 b(Hence)18 b Fo(Q)f Fp(=)75 594 y Fo(n)102 577 y Fl(`=)p Fm(2)164 594 y Fn(\001)10 b Fp(\(5)p Fo(n=)p Fp(3\))319 577 y Fl(`=)p Fm(2)369 594 y Fp(.)20 b(Observ)o(e)c(that)e(this)i(n)o (um)o(b)q(er)g(is)f(the)h(same)e(for)h(all)h(pro)o(v)o(ers.)75 674 y Fg(Lemm)o(a)e(7)23 b Fk(If)18 b Fo(\036)g Fk(is)g(satis\014able,) f(then)h(the)g(ab)n(ove)g(set)g(of)g Fo(N)j Fp(=)16 b Fo(mR)i Fk(p)n(oints)f(c)n(an)h(b)n(e)f(c)n(over)n(e)n(d)h(by)g Fo(k)q(Q)75 731 y Fk(subsets.)h(If)13 b(only)h(a)g Fp(\(1)5 b Fn(\000)g Fo(\017)p Fp(\))14 b Fk(fr)n(action)f(of)h(the)h(clauses)e (in)g Fo(\036)h Fk(ar)n(e)g(simultane)n(ously)f(satis\014able,)g(the)h (ab)n(ove)75 787 y(set)i(r)n(e)n(quir)n(es)f Fp(\(1)10 b Fn(\000)g Fp(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))p Fo(k)q(Q)j Fp(ln)f Fo(m)16 b Fk(subsets)g(in)f(or)n(der)i(to)g(b)n(e)e (c)n(over)n(e)n(d,)h(wher)n(e)g Fo(f)5 b Fp(\()p Fo(k)q Fp(\))12 b Fn(!)i Fp(0)i Fk(as)g Fo(k)d Fn(!)g(1)p Fk(.)146 867 y Fg(Pro)q(of:)k Fp(If)12 b Fo(\036)f Fp(is)h(satis\014able,)h (consider)f(a)f(satisfying)h(assignmen)o(t)f Fo(A)h Fp(for)f Fo(\036)p Fp(,)g(and)h(\014x)g(for)e(the)i(pro)o(v)o(ers)75 924 y(the)17 b(strategy)e(of)h(answ)o(ering)g(eac)o(h)h(question)g (consisten)o(tly)g(with)g(this)g(satisfying)g(assignmen)o(t.)24 b(No)o(w)75 980 y(consider)14 b(the)f(subsets)h Fo(S)510 990 y Fm(\()p Fl(q)q(;a;i)p Fm(\))606 980 y Fp(,)g(for)e(whic)o(h)i Fo(a)f Fp(is)h(indeed)h(the)e(answ)o(er)g(giv)o(en)g(b)o(y)g(pro)o(v)o (er)g Fo(P)1621 987 y Fl(i)1648 980 y Fp(on)g(question)75 1037 y Fo(q)21 b Fp(under)e(the)g(ab)q(o)o(v)o(e)f(strategy)l(.)30 b(F)l(or)18 b(an)o(y)g Fo(r)q Fp(,)h(consider)h(only)f(the)g(subsets)g Fo(S)1446 1046 y Fm(\()p Fl(q)1476 1051 y Fc(1)1492 1046 y Fl(;a)1521 1051 y Fc(1)1538 1046 y Fl(;)p Fm(1\))1581 1037 y Fp(,)g Fo(S)1641 1046 y Fm(\()p Fl(q)1671 1051 y Fc(2)1688 1046 y Fl(;a)1717 1051 y Fc(2)1734 1046 y Fl(;)p Fm(2\))1777 1037 y Fp(,)g Fo(:)8 b(:)g(:)n Fp(,)75 1093 y Fo(S)103 1103 y Fm(\()p Fl(q)133 1109 y Ff(k)151 1103 y Fl(;a)180 1109 y Ff(k)199 1103 y Fl(;k)q Fm(\))244 1093 y Fp(,)17 b(where)g(for)f(1)g Fn(\024)g Fo(i)f Fn(\024)h Fo(k)q Fp(,)h(\()p Fo(q)743 1100 y Fl(i)757 1093 y Fo(;)8 b(i)p Fp(\))14 b Fn(2)i Fo(r)q Fp(,)h(and)g Fo(a)1038 1100 y Fl(i)1069 1093 y Fp(is)g(the)g(answ)o(er)g(giv)o(en)g(b)o(y)g (pro)o(v)o(er)f Fo(P)1705 1100 y Fl(i)1737 1093 y Fp(on)h(this)75 1150 y(question)i(under)f(the)g(strategy)f(describ)q(ed)j(ab)q(o)o(v)o (e.)28 b(Then)18 b(the)h(partition)f(system)f Fo(B)1591 1157 y Fl(r)1611 1150 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))14 b(is)75 1206 y(completely)g(co)o(v)o(ered)f(b)o(y)g(these)g Fo(k)h Fp(sets)f Fo(S)790 1215 y Fm(\()p Fl(q)820 1220 y Ff(i)832 1215 y Fl(;a)861 1220 y Ff(i)874 1215 y Fl(;i)p Fm(\))911 1206 y Fp(,)g(since)h(for)f(the)g(partition)g(whose)g(lab)q (el)h Fo(p)f Fp(agrees)g(with)75 1263 y(assignmen)o(t)k Fo(A)p Fp(,)h(the)g Fo(i)p Fp(th)f(suc)o(h)h(set)f(con)o(tains)g (subset)h Fo(B)r Fp(\()p Fo(r)o(;)8 b(p;)g(i)p Fp(\),)15 b(for)i(ev)o(ery)g Fo(i)p Fp(.)27 b(A)17 b(similar)i(argumen)o(t)75 1319 y(applies)f(for)d(ev)o(ery)h Fo(r)q Fp(.)23 b(Hence)17 b(the)g(collection)h(of)d(subsets)i(describ)q(ed)h(ab)q(o)o(v)o(e)e(co) o(v)o(ers)f(all)i(p)q(oin)o(ts.)24 b(The)75 1376 y(n)o(um)o(b)q(er)e (of)e(subsets)i(used)g(is)f Fo(k)i Fp(times)e(the)h(n)o(um)o(b)q(er)f (of)g(p)q(ossible)i(questions)f(to)f(a)g(single)h(pro)o(v)o(er.)75 1432 y(In)o(terestingly)l(,)16 b(the)f Fo(k)q(Q)h Fp(subsets)f(used)h (in)g(the)f(co)o(v)o(er)g(happ)q(en)h(to)e(b)q(e)i(disjoin)o(t.)146 1488 y(If)22 b(only)g(a)f(\(1)14 b Fn(\000)h Fo(\017)p Fp(\)-fraction)22 b(of)f(the)h(clauses)g(in)h Fo(\036)f Fp(are)f(sim)o(ultaneously)i(satis\014able,)h(then)e(b)o(y)75 1545 y(Lemma)16 b(5)f(an)o(y)g(strategy)g(of)g(the)h(pro)o(v)o(ers)f (\(w)o(eakly\))g(succeeds)h(with)g(probabilit)o(y)h(at)e(most)g Fo(k)1727 1528 y Fm(2)1757 1545 y Fn(\001)10 b Fp(2)1803 1528 y Fy(\000)p Fl(c`)1862 1545 y Fp(.)75 1601 y(Assume)15 b(a)g(co)o(v)o(er)g(of)g(size)h(\(1)9 b Fn(\000)i Fo(\016)r Fp(\))p Fo(k)q(Q)d Fp(ln)f Fo(m)p Fp(,)15 b(where)g Fo(\016)g Fp(=)e(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\),)14 b(and)h(deriv)o(e)h(a)f (con)o(tradiction.)146 1658 y(Let)22 b Fn(C)j Fp(b)q(e)e(a)f (collection)i(of)e(subsets)g(that)g(co)o(v)o(ers)g Fo(S)s Fp(,)h(where)f Fn(jC)s(j)i Fp(=)h(\(1)14 b Fn(\000)h Fo(\016)r Fp(\))p Fo(k)q(Q)8 b Fp(ln)g Fo(m)p Fp(.)41 b(With)75 1714 y(eac)o(h)19 b(question)g Fo(q)i Fp(to)d(a)h(pro)o(v)o (er)f Fo(P)680 1721 y Fl(i)713 1714 y Fp(asso)q(ciate)h(a)f(w)o(eigh)o (t)h Fo(w)1130 1721 y Fl(q)q(;i)1189 1714 y Fp(equal)h(to)e(the)h(n)o (um)o(b)q(er)g(of)g(answ)o(ers)f Fo(a)75 1771 y Fp(suc)o(h)e(that)e Fo(S)304 1780 y Fm(\()p Fl(q)q(;a;i)p Fm(\))414 1771 y Fn(2)f(C)s Fp(.)20 b(Hence)652 1739 y Fb(P)696 1782 y Fl(q)q(;i)744 1771 y Fo(w)777 1778 y Fl(q)q(;i)830 1771 y Fp(=)14 b Fn(jC)s(j)p Fp(.)19 b(With)c(eac)o(h)h(random)f (string)g Fo(r)h Fp(asso)q(ciate)f(a)g(w)o(eigh)o(t)75 1827 y Fo(w)108 1834 y Fl(r)139 1827 y Fp(=)187 1795 y Fb(P)231 1839 y Fm(\()p Fl(q)q(;i)p Fm(\))p Fy(2)p Fl(r)347 1827 y Fo(w)380 1834 y Fl(q)q(;i)421 1827 y Fp(.)j(This)12 b(w)o(eigh)o(t)g(is)g(equal)g(to)f(the)h(n)o(um)o(b)q (er)g(of)f(subsets)g(that)g(participate)i(in)f(co)o(v)o(ering)75 1884 y(the)j Fo(m)g Fp(p)q(oin)o(ts)h(of)f Fo(B)431 1891 y Fl(r)450 1884 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\).)17 b(Call)f Fo(r)f Fk(go)n(o)n(d)h Fp(if)f Fo(w)1007 1891 y Fl(r)1038 1884 y Fo(<)e Fp(\(1)d Fn(\000)g Fo(\016)r(=)p Fp(2\))p Fo(k)e Fp(ln)g Fo(m)p Fp(.)75 1964 y Fg(Prop)q(osition)19 b(8)j Fk(The)16 b(fr)n(action)g(of)h(go)n(o)n(d)f Fo(r)h Fk(is)f(at)g(le)n(ast)g Fo(\016)r(=)p Fp(2)p Fk(.)146 2045 y Fg(Pro)q(of:)23 b Fp(Assume)17 b(otherwise.)25 b(Then)827 2012 y Fb(P)871 2056 y Fl(r)897 2045 y Fo(w)930 2052 y Fl(r)964 2045 y Fn(\025)16 b Fp(\(1)11 b Fn(\000)h Fo(\016)r(=)p Fp(2\))1200 2028 y Fm(2)1218 2045 y Fo(k)q(R)c Fp(ln)g Fo(m)16 b(>)g Fp(\(1)11 b Fn(\000)g Fo(\016)r Fp(\))p Fo(k)q(R)c Fp(ln)i Fo(m)p Fp(,)17 b(where)75 2101 y Fo(R)e Fp(denotes)g(the)h(n)o(um)o(b)q(er)f(of)g(p)q(ossible)i (random)e(strings)g(of)g(the)g(v)o(eri\014er.)20 b(On)c(the)f(other)g (hand,)555 2183 y Fb(X)576 2270 y Fl(r)622 2223 y Fo(w)655 2230 y Fl(r)686 2223 y Fp(=)734 2183 y Fb(X)756 2270 y Fl(r)825 2183 y Fb(X)802 2277 y Fm(\()p Fl(q)q(;i)p Fm(\))p Fy(2)p Fl(r)916 2223 y Fo(w)949 2230 y Fl(q)q(;i)1002 2223 y Fp(=)1050 2183 y Fb(X)1061 2274 y Fl(q)q(;i)1123 2193 y Fo(R)p 1123 2213 36 2 v 1123 2255 a(Q)1164 2223 y(w)1197 2230 y Fl(q)q(;i)1250 2223 y Fp(=)1303 2193 y Fo(R)p 1303 2213 V 1303 2255 a(Q)1343 2223 y Fn(jC)s(j)75 2344 y Fp(where)g(the)f(middle)i(equalit)o(y)g(follo)o(ws)e(from)g(the) g(fact)g(that)g(there)g(are)g(exactly)h Fo(R=Q)f Fp(random)g(strings)75 2400 y(that)h(cause)i(the)f(v)o(eri\014er)h(to)e(send)i(out)e(question) i Fo(q)r Fp(.)23 b(Hence)17 b Fn(jC)s(j)c Fo(>)h Fp(\(1)c Fn(\000)h Fo(\016)r Fp(\))p Fo(k)q(Q)d Fp(ln)g Fo(m)p Fp(.)22 b(Con)o(tradiction.)75 2457 y Fe(2)952 2581 y Fp(14)p eop %%Page: 15 15 15 14 bop 75 311 a Fg(Prop)q(osition)19 b(9)j Fk(L)n(et)16 b Fn(C)k Fk(b)n(e)c(a)h(c)n(ol)r(le)n(ction)f(of)h(subsets)e(that)j(c)n (overs)e Fo(S)s Fk(,)g(wher)n(e)h Fn(jC)s(j)c Fp(=)h(\(1)c Fn(\000)g Fo(\016)r Fp(\))p Fo(k)q(Q)e Fp(ln)g Fo(m)p Fk(.)75 368 y(Then)20 b(for)i(some)f(str)n(ate)n(gy)f(for)i(the)f Fo(k)h Fk(pr)n(overs,)g(the)g(veri\014er)f(ac)n(c)n(epts)f Fo(\036)h Fk(with)h(pr)n(ob)n(ability)e(at)i(le)n(ast)75 424 y Fp(2)p Fo(\016)r(=)p Fp(\()p Fo(k)8 b Fp(ln)g Fo(m)p Fp(\))296 408 y Fm(2)315 424 y Fk(.)146 531 y Fg(Pro)q(of:)20 b Fp(Based)c(on)g Fn(C)s Fp(,)f(w)o(e)h(describ)q(e)h(a)e(randomized)i (strategy)e(for)g(the)h Fo(k)g Fp(pro)o(v)o(ers.)21 b(On)16 b(question)75 587 y Fo(q)j Fp(addressed)e(to)f(pro)o(v)o(er)g Fo(P)551 594 y Fl(i)565 587 y Fp(,)g(pro)o(v)o(er)g Fo(P)765 594 y Fl(i)796 587 y Fp(selects)h(an)g(answ)o(er)f Fo(a)h Fp(uniformly)g(at)f(random)h(from)e(the)i(set)75 643 y(of)g(answ)o(ers)f(that)g(satisfy)h Fo(S)571 653 y Fm(\()p Fl(q)q(;a;i)p Fm(\))683 643 y Fn(2)f(C)s Fp(.)25 b(W)l(e)17 b(sho)o(w)f(that)h(under)g(this)h(strategy)d(for)i(the)g(pro)o(v)o (ers,)f(the)75 700 y(v)o(eri\014er)d(w)o(eakly)f(accepts)h(with)f (probabilit)o(y)i(at)d(least)i(2)p Fo(\016)r(=)p Fp(\()p Fo(k)8 b Fp(ln)g Fo(m)p Fp(\))1235 683 y Fm(2)1254 700 y Fp(,)13 b(where)f(this)h(probabilit)o(y)h(is)e(tak)o(en)75 756 y(o)o(v)o(er)k(the)g(join)o(t)h(distribution)h(of)e(the)g(coin)i (tosses)e(of)g(the)g(pro)o(v)o(ers)g(and)h(of)f(the)g(v)o(eri\014er.)25 b(Clearly)l(,)17 b(b)o(y)75 813 y(\014xing)h(the)f(optimal)g(coin)h (tosses)e(for)g(the)h(pro)o(v)o(ers,)f(one)h(obtains)g(a)f (deterministic)j(strategy)d(for)g(the)75 869 y(pro)o(v)o(ers)h(that)g (satis\014es)h(the)g(w)o(eak)f(acceptance)i(predicate)f(with)g(a)g (probabilit)o(y)h(that)e(is)h(at)f(least)h(as)75 926 y(high.)146 982 y(Observ)o(e)e(that)g(for)f(a)h(\014xed)h Fo(r)q Fp(,)f(there)g(is)h(a)f(one)g(to)g(one)g(corresp)q(ondence)h(b)q (et)o(w)o(een)g(sets)f Fo(B)r Fp(\()p Fo(r)o(;)8 b(p;)g(i)p Fp(\))75 1039 y(that)18 b(participate)h(in)g(the)g(co)o(v)o(er)f(of)g Fo(B)758 1046 y Fl(r)777 1039 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))15 b(and)k(sets)f Fo(S)1223 1048 y Fm(\()p Fl(q)q(;a;i)p Fm(\))1338 1039 y Fp(that)g(b)q(elong)i(to)d Fn(C)s Fp(.)30 b(F)l(or)18 b(this)75 1095 y(corresp)q(ondence)f(w)o(e)e(need)i(\()p Fo(q)r(;)8 b(i)p Fp(\))j Fn(2)j Fo(r)j Fp(and)f(the)f(pro)s(jection)h (of)f Fo(a)h Fp(on)f(the)h(sequence)h(of)e(distinguished)75 1152 y(v)m(ariables)i(to)d(b)q(e)i Fo(p)p Fp(.)146 1208 y(Concen)o(trate)g(no)o(w)h(only)g(on)g(go)q(o)q(d)h Fo(r)q Fp(,)f(and)g(compute)g(a)g(lo)o(w)o(er)g(b)q(ound)h(on)f(the)g (probabilit)o(y)i(that)75 1264 y(the)h(v)o(eri\014er)g(accepts)g(when)h (he)f(c)o(ho)q(oses)g(a)f(go)q(o)q(d)h Fo(r)q Fp(.)34 b(Observ)o(e)20 b(that)f(b)o(y)h(prop)q(ert)o(y)g(4)f(of)h(partition)75 1321 y(systems,)14 b(and)g(b)o(y)g(the)h(fact)e(that)h(for)g(go)q(o)q (d)g Fo(r)h Fp(the)f(resp)q(ectiv)o(e)i Fo(B)1206 1328 y Fl(r)1225 1321 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))j(is)k(co)o(v)o(ered)f(b)o(y)g(at)g(most)75 1377 y(\(1)d Fn(\000)i Fo(\016)r(=)p Fp(2\))p Fo(k)7 b Fp(ln)i Fo(m)18 b Fp(subsets,)g(the)g(co)o(v)o(er)f Fn(C)k Fp(m)o(ust)c(ha)o(v) o(e)h(used)g(t)o(w)o(o)f(subsets)h(from)f(the)h(same)g(partition)75 1434 y Fo(p)e Fp(in)h(the)g(co)o(v)o(er)e(of)h Fo(B)453 1441 y Fl(r)472 1434 y Fp(\()p Fo(m;)8 b(L;)g(k)q(;)g(d)p Fp(\))13 b(\(b)o(y)j(our)g(c)o(hoice)h(of)f Fo(\016)g Fp(=)f(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\).)22 b(Denote)16 b(these)h(t)o(w)o(o)e(subsets)h(b)o(y)75 1490 y Fo(B)r Fp(\()p Fo(r)o(;)8 b(p;)g(i)p Fp(\))14 b(and)j Fo(B)r Fp(\()p Fo(r)o(;)8 b(p;)g(j)s Fp(\))o(,)14 b(where)j Fo(i)d Fn(6)p Fp(=)i Fo(j)s Fp(,)f(and)i(their)g(corresp)q(onding)h (subsets)e(in)i Fn(C)h Fp(b)o(y)d Fo(S)1663 1499 y Fm(\()p Fl(q)1693 1504 y Ff(i)1706 1499 y Fl(;a)1735 1504 y Ff(i)1748 1499 y Fl(;i)p Fm(\))1802 1490 y Fp(and)75 1547 y Fo(S)103 1556 y Fm(\()p Fl(q)133 1561 y Ff(j)149 1556 y Fl(;a)178 1561 y Ff(j)193 1556 y Fl(;j)r Fm(\))235 1547 y Fp(,)i(resp)q(ectiv)o (ely)l(.)27 b(Consider)18 b(what)f(happ)q(ens)h(when)g(the)f(v)o (eri\014er)h(c)o(ho)q(oses)g(random)e(string)i Fo(r)q Fp(.)75 1603 y(Pro)o(v)o(er)c Fo(P)250 1610 y Fl(i)280 1603 y Fp(then)i(receiv)o(es)g(question)g Fo(q)752 1610 y Fl(i)782 1603 y Fp(and)g(pro)o(v)o(er)e Fo(P)1040 1610 y Fl(j)1074 1603 y Fp(receiv)o(es)j(question)f Fo(q)1443 1610 y Fl(j)1461 1603 y Fp(.)21 b(Let)16 b Fo(A)1611 1610 y Fl(r)o(;i)1665 1603 y Fp(denote)g(the)75 1660 y(set)i(of)g(answ)o(ers)g(satisfying)g Fo(a)g Fn(2)h Fo(A)706 1667 y Fl(r)o(;i)763 1660 y Fp(if)g(and)f(only)h(if)g Fo(S)1075 1669 y Fm(\()p Fl(q)1105 1674 y Ff(i)1117 1669 y Fl(;a;i)p Fm(\))1201 1660 y Fn(2)g(C)s Fp(.)28 b(De\014ne)19 b Fo(A)1496 1667 y Fl(r)o(;j)1558 1660 y Fp(in)g(an)f(analogous)75 1716 y(manner.)23 b(By)17 b(the)f(strategy)f(describ)q(ed)j(ab)q(o)o(v) o(e,)e(pro)o(v)o(er)g Fo(P)1105 1723 y Fl(i)1135 1716 y Fp(selects)h(an)f(answ)o(er)g Fo(a)f Fn(2)g Fo(A)1612 1723 y Fl(r)o(;i)1667 1716 y Fp(at)g(random)75 1773 y(\(and)21 b Fo(P)216 1780 y Fl(j)255 1773 y Fp(selects)g Fo(a)h Fn(2)h Fo(A)535 1780 y Fl(r)o(;j)578 1773 y Fp(\).)36 b(Observ)o(e)21 b(that)f(for)g Fo(a)1028 1780 y Fl(i)1063 1773 y Fp(and)h Fo(a)1181 1780 y Fl(j)1220 1773 y Fp(ab)q(o)o(v)o(e,)h Fo(a)1393 1780 y Fl(i)1429 1773 y Fn(2)g Fo(A)1515 1780 y Fl(r)o(;i)1575 1773 y Fp(and)f Fo(a)1693 1780 y Fl(j)1733 1773 y Fn(2)h Fo(A)1819 1780 y Fl(r)o(;j)1862 1773 y Fp(,)75 1829 y(and)17 b(furthermore,)g(for)g(go)q(o)q(d)g Fo(r)q Fp(,)g Fn(j)p Fo(A)716 1836 y Fl(r)o(;i)754 1829 y Fn(j)11 b Fp(+)h Fn(j)p Fo(A)872 1836 y Fl(r)o(;j)915 1829 y Fn(j)j Fo(<)i(k)8 b Fp(ln)h Fo(m)p Fp(.)26 b(Hence)18 b(the)f(join)o(t)g(probabilit)o(y)h(that)f(the)75 1885 y(pro)o(v)o(ers)f(c)o(ho)q(ose)i(to)e(answ)o(er)h(with)g Fo(a)721 1892 y Fl(i)752 1885 y Fp(and)h Fo(a)867 1892 y Fl(j)902 1885 y Fp(is)g(at)f(least)g(4)p Fo(=)p Fp(\()p Fo(k)8 b Fp(ln)g Fo(m)p Fp(\))1315 1869 y Fm(2)1334 1885 y Fp(.)26 b(Since)19 b(b)q(oth)e(these)h(answ)o(ers)75 1942 y(are)d(consisten)o(t)g(with)h(the)f(lab)q(el)i Fo(p)e Fp(of)g(the)g(same)g(partition,)g(the)g(v)o(eri\014er)h(w)o (eakly)f(accepts.)146 1998 y(T)l(o)10 b(complete)i(the)f(pro)q(of,)h (use)f(Prop)q(osition)h(8,)f(whic)o(h)h(sho)o(ws)e(that)h(the)g (probabilit)o(y)h(that)f(a)f(v)o(eri\014er)75 2055 y(c)o(ho)q(oses)15 b(a)g(go)q(o)q(d)g Fo(r)h Fp(is)g(at)e(least)i Fo(\016)r(=)p Fp(2.)57 b Fe(2)146 2111 y Fp(T)l(o)13 b(complete)h(the)g(pro)q(of)g (of)f(Lemma)h(7,)f(observ)o(e)g(that)g(2)p Fo(\016)r(=)p Fp(\()p Fo(k)8 b Fp(ln)g Fo(m)p Fp(\))1334 2095 y Fm(2)1366 2111 y Fo(>)13 b(k)1439 2095 y Fm(2)1466 2111 y Fn(\001)7 b Fp(2)1509 2095 y Fy(\000)p Fl(c`)1568 2111 y Fp(,)14 b(for)f(su\016cien)o(tly)75 2168 y(large)i Fo(`)g Fp(\(made)g(p)q (ossible)i(b)o(y)e Fo(`)e Fp(=)g(\002\(log)8 b(log)g Fo(n)p Fp(\))16 b(and)f Fo(m)d Fp(=)h Fo(n)1134 2151 y Fm(\002\()p Fl(`)p Fm(\))1206 2168 y Fp(\).)58 b Fe(2)146 2224 y Fp(W)l(e)15 b(no)o(w)g(pro)o(v)o(e)f(our)h(main)h(theorem.)75 2330 y Fg(Theorem)f(10)23 b Fk(If)13 b(ther)n(e)g(is)f(some)h Fo(\017)g(>)g Fp(0)g Fk(such)g(that)h(a)g(p)n(olynomial)e(time)i (algorithm)f(c)n(an)g(appr)n(oximate)75 2387 y(set)j(c)n(over)g(within) g Fp(\(1)10 b Fn(\000)g Fo(\017)p Fp(\))e(ln)g Fo(n)p Fk(,)17 b(then)f Fo(N)5 b(P)18 b Fn(\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)1072 2370 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))1253 2387 y Fp(\))p Fk(.)952 2581 y Fp(15)p eop %%Page: 16 16 16 15 bop 146 311 a Fg(Pro)q(of:)17 b Fp(Assume)12 b(that)f(there)g(is) h(a)g(p)q(olynomial)h(time)f(algorithm)f Fo(A)h Fp(that)e(appro)o (ximates)h(set)h(co)o(v)o(er)75 368 y(within)17 b(\(1)9 b Fn(\000)i Fo(\017)p Fp(\))d(ln)g Fo(n)p Fp(.)20 b(Consider)c(no)o(w)f (an)g(arbitrary)g(NP-problem.)21 b(Reduce)16 b(it)g(to)f(the)g (NP-complete)75 424 y(problem)20 b(of)g(appro)o(ximating)f(an)h (instance)h(of)e(max)g(3SA)l(T-5.)34 b(No)o(w)19 b(follo)o(w)h(the)f (reduction)i(to)e(set)75 481 y(co)o(v)o(er)12 b(describ)q(ed)j(ab)q(o)o (v)o(e,)d(with)h Fo(k)h Fp(su\016cien)o(tly)g(large)f(so)g(that)f Fo(f)5 b Fp(\()p Fo(k)q Fp(\))12 b(in)i(Lemma)f(7)f(is)h(smaller)h (than)e Fo(\017=)p Fp(4,)75 537 y(and)i(with)g Fo(m)f Fp(=)g(\(5)p Fo(n)p Fp(\))451 521 y Fm(2)p Fl(`=\017)516 537 y Fp(.)20 b(Using)14 b(the)g(deterministic)i(construction)e(of)f (partition)i(systems)e(describ)q(ed)75 594 y(in)19 b([27)o(],)f(and)g (observing)g(that)f Fo(m)p Fp(,)h Fo(R)g Fp(and)g Fo(Q)g Fp(are)g(b)q(ounded)h(b)o(y)f Fo(n)1260 577 y Fl(O)q Fm(\(log)5 b(log)g Fl(n)p Fm(\))1442 594 y Fp(,)18 b(the)g(time)g(to)f (p)q(erform)75 650 y(this)j(reduction)h(is)f Fo(n)452 634 y Fl(O)q Fm(\(log)5 b(log)h Fl(n)p Fm(\))634 650 y Fp(.)33 b(Recall)22 b(that)d(the)h(n)o(um)o(b)q(er)g(of)f(p)q(oin)o (ts)h(in)h(the)f(set)f(co)o(v)o(er)g(problem)75 707 y(is)h Fo(N)25 b Fp(=)c Fo(mR)e Fp(where)h Fo(R)g Fp(=)h(\(5)p Fo(n)p Fp(\))670 690 y Fl(`)686 707 y Fp(,)f(and)g(observ)o(e)g(that)f (for)g Fo(m)h Fp(as)f(ab)q(o)o(v)o(e,)h(ln)8 b Fo(m)21 b(>)f Fp(\(1)13 b Fn(\000)g Fo(\017=)p Fp(2\))8 b(ln)g Fo(N)d Fp(.)75 763 y(By)17 b(Lemma)g(7,)g(if)h(the)f(original)i(NP)e (instance)h(w)o(as)e(satis\014able,)i(all)g(p)q(oin)o(ts)g(can)f(b)q(e) h(co)o(v)o(ered)f(b)o(y)g Fo(k)q(Q)75 819 y Fp(subsets,)i(and)g(if)g (the)g(original)h(NP)f(instance)g(w)o(as)f(not)g(satis\014able,)j(all)e (p)q(oin)o(ts)g(cannot)g(b)q(e)g(co)o(v)o(ered)75 876 y(b)o(y)i(\(1)13 b Fn(\000)i Fp(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))p Fo(k)q(Q)j Fp(ln)f Fo(m)p Fp(.)37 b(F)l(or)21 b(our)f(c)o(hoice)i(of)f Fo(k)h Fp(and)f Fo(m)p Fp(,)h(the)g(ratio)e(b) q(et)o(w)o(een)i(the)f(t)o(w)o(o)e(cases)i(is)75 932 y(\(1)10 b Fn(\000)i Fp(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))j(ln)f Fo(m)15 b(>)g Fp(\(1)c Fn(\000)g Fo(\017)p Fp(\))d(ln)g Fo(N)d Fp(.)24 b(Hence)18 b(b)o(y)e(applying)i(algorithm)f Fo(A)f Fp(to)g(the)h(set)g(co)o(v)o(er)f(problem,)75 989 y(one)f(can)h(tell)g(whether)f(the)h(original)g(NP)f(instance)h(w)o (as)e(satis\014able)j(or)d(not.)58 b Fe(2)75 1130 y Fq(5)69 b(Max)24 b Fa(k)r Fq(-co)n(v)n(er)75 1232 y Fp(W)l(e)17 b(sa)o(y)f(that)g(a)g(p)q(olynomial)i(time)f(algorithm)g Fk(c)n(onstructively)g(appr)n(oximates)g Fp(max)f Fo(k)q Fp(-co)o(v)o(er)h(within)75 1288 y(a)e(ratio)f(of)h Fo(\016)f(<)f Fp(1)i(if)g(on)g(an)o(y)g(input,)g(the)g(n)o(um)o(b)q(er)h(of)e(p)q (oin)o(ts)h(co)o(v)o(ered)g(b)o(y)g(the)g Fo(k)h Fp(sets)f(selected)h (b)o(y)f(the)75 1344 y(algorithm)h(is)h(at)f(least)g(a)h Fo(\016)r Fp(-fraction)f(of)g(the)g(n)o(um)o(b)q(er)h(of)f(p)q(oin)o (ts)h(co)o(v)o(ered)f(b)o(y)g(the)h(optimal)g(solution.)75 1401 y(The)e(follo)o(wing)h(prop)q(osition)g(is)g(w)o(ell)g(kno)o(wn)f (and)h(is)f(presen)o(ted)h(for)f(completeness.)75 1493 y Fg(Prop)q(osition)k(11)k Fk(The)17 b(gr)n(e)n(e)n(dy)h(algorithm)g (\(iter)n(atively)f(sele)n(cting)g(the)h(sets)f(that)i(c)n(over)f(the)g (lar)n(gest)75 1550 y(numb)n(er)e(of)h(yet)g(unc)n(over)n(e)n(d)f(p)n (oints\))g(c)n(onstructively)g(appr)n(oximates)h(max)g Fo(k)q Fk(-c)n(over)g(within)g(a)g(r)n(atio)g(of)75 1606 y(at)g(le)n(ast)e Fp(1)10 b Fn(\000)g Fp(1)p Fo(=e)j Fn(')f Fp(0)p Fo(:)p Fp(632)p Fk(.)146 1698 y Fg(Pro)q(of:)17 b Fp(Let)12 b Fo(S)414 1682 y Fy(0)438 1698 y Fn(\032)h Fo(S)h Fp(b)q(e)e(the)g(set)g(of)f(p)q(oin)o(ts)h(co)o(v)o(ered)f(b)o (y)h(the)g(optimal)g(solution,)h(and)e(let)h Fo(n)1722 1682 y Fy(0)1747 1698 y Fp(=)h Fn(j)p Fo(S)1839 1682 y Fy(0)1850 1698 y Fn(j)p Fp(.)75 1755 y(Let)g Fo(n)181 1762 y Fl(i)209 1755 y Fp(b)q(e)h(the)f(n)o(um)o(b)q(er)g(of)g(new)g(p) q(oin)o(ts)h(co)o(v)o(ered)f(b)o(y)g(the)g Fo(i)p Fp(th)g(set)f (selected)j(b)o(y)e(the)g(greedy)g(algorithm.)75 1811 y(Then)j(since)g Fo(S)336 1795 y Fy(0)362 1811 y Fp(can)g(b)q(e)g(co)o (v)o(ered)f(b)o(y)g Fo(k)h Fp(sets,)e(it)i(follo)o(ws)f(that)792 1949 y Fo(n)819 1956 y Fl(i)846 1949 y Fn(\025)899 1913 y Fo(n)926 1896 y Fy(0)948 1913 y Fn(\000)993 1881 y Fb(P)1037 1894 y Fl(i)p Fy(\000)p Fm(1)1037 1926 y Fl(j)r Fm(=1)1108 1913 y Fo(n)1135 1920 y Fl(j)p 899 1939 255 2 v 1013 1980 a Fo(k)146 2046 y Fp(Hence)281 2014 y Fb(P)324 2027 y Fl(i)324 2058 y(j)r Fm(=1)395 2046 y Fo(n)422 2053 y Fl(j)454 2046 y Fn(\025)e Fo(n)529 2030 y Fy(0)551 2046 y Fn(\000)d Fo(n)623 2030 y Fy(0)635 2046 y Fp(\(1)f Fn(\000)737 2029 y Fm(1)p 736 2036 20 2 v 736 2062 a Fl(k)760 2046 y Fp(\))778 2030 y Fl(i)807 2046 y Fp(and)619 2134 y Fl(k)599 2147 y Fb(X)600 2238 y Fl(i)p Fm(=1)666 2187 y Fo(n)693 2194 y Fl(i)720 2187 y Fn(\025)k Fo(n)795 2168 y Fy(0)817 2187 y Fn(\000)e Fo(n)890 2168 y Fy(0)902 2187 y Fp(\(1)e Fn(\000)1004 2156 y Fp(1)p 1002 2177 26 2 v 1002 2218 a Fo(k)1033 2187 y Fp(\))1051 2168 y Fl(k)1084 2187 y Fn(\025)k Fo(n)1159 2168 y Fy(0)1171 2187 y Fp(\(1)d Fn(\000)g Fp(1)p Fo(=e)p Fp(\))183 2287 y Fe(2)146 2344 y Fp(Using)15 b(a)f(T)l(uring)h(reduction,)g(Theorem)g (10)f(can)g(b)q(e)h(used)g(to)f(sho)o(w)g(that)g(the)h(p)q(erformance)f (guar-)75 2400 y(an)o(tee)f(of)f(the)h(greedy)g(algorithm)g(is)g (optimal)g(up)g(to)f(lo)o(w)h(order)g(terms.)18 b(This)c(has)e(also)h (b)q(een)h(observ)o(ed)75 2457 y(b)o(y)h(others)g(\(see)g([15)o(],)g (for)f(example\).)952 2581 y(16)p eop %%Page: 17 17 17 16 bop 75 311 a Fg(Prop)q(osition)19 b(12)k Fk(If)f(max)i Fo(k)q Fk(-c)n(over)f(c)n(an)f(b)n(e)h(c)n(onstructively)f(appr)n (oximate)n(d)i(in)e(p)n(olynomial)h(time)75 368 y(within)16 b(a)h(r)n(atio)f(of)h Fp(\(1)9 b Fn(\000)i Fp(1)p Fo(=e)e Fp(+)i Fo(\017)p Fp(\))16 b Fk(for)h(some)f Fo(\017)d(>)g Fp(0)p Fk(,)j(then)g Fo(N)5 b(P)19 b Fn(\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)1433 351 y Fl(O)q Fm(\(log)s(log)h Fl(n)p Fm(\))1613 368 y Fp(\))p Fk(.)146 474 y Fg(Pro)q(of:)20 b Fp(Assume)c(that)e(a)i(p)q(olynomial)h(time)f(algorithm)f Fo(A)h Fp(appro)o(ximates)f(max)g Fo(k)q Fp(-co)o(v)o(er)g(within)75 531 y(a)g(ratio)g(of)g(1)10 b Fn(\000)h Fp(1)p Fo(=e)f Fp(+)g Fo(\017)16 b Fp(for)f(some)g Fo(\017)f(>)f Fp(0.)21 b(W)l(e)15 b(use)h(algorithm)g Fo(A)f Fp(as)g(a)g(subroutine)i(in)f(a)f (p)q(olynomial)75 587 y(time)20 b(algorithm)g Fo(B)i Fp(that)d(appro)o(ximates)g(set)h(co)o(v)o(er)f(within)h(\(1)13 b Fn(\000)g Fo(\016)r Fp(\))8 b(ln)g Fo(n)p Fp(.)33 b(By)20 b(Theorem)g(10,)g(this)75 643 y(implies)d(that)e Fo(N)5 b(P)18 b Fn(\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)653 627 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))834 643 y Fp(\).)146 700 y(Giv)o(en)14 b(an)g(instance)h(of)e(set)h(co)o(v)o(er,) f(try)g(out)h(all)h(p)q(ossible)h(v)m(alues)f(of)e(1)g Fn(\024)g Fo(k)g Fn(\024)g Fo(n)h Fp(as)g(the)g(n)o(um)o(b)q(er)g(of)75 756 y(sets)h(that)f(su\016ce)h(to)f(co)o(v)o(er)g(all)i(p)q(oin)o(ts.)k (One)c(of)e(those)h(c)o(hoices)h(of)e Fo(k)i Fp(is)g(the)e(true)h (optimal)h Fo(k)q Fp(,)e(and)h(w)o(e)75 813 y(concen)o(trate)i(on)h (the)f(one)h(case)g(in)g(whic)o(h)h(this)f Fo(k)g Fp(is)h(tried)f(out.) 26 b(Algorithm)18 b Fo(B)j Fp(rep)q(eatedly)d(applies)75 869 y(algorithm)k Fo(A)f Fp(on)h(max)f Fo(k)q Fp(-co)o(v)o(er)g (problems,)j(where)e(after)f(eac)o(h)h(application)h(the)f(p)q(oin)o (ts)g(already)75 926 y(co)o(v)o(ered)15 b(b)o(y)g(previous)h (applications)h(are)e(remo)o(v)o(ed)f(\(but)h Fo(k)i Fp(remains)e(unc)o(hanged\).)146 982 y(Since)i(all)g(of)e Fo(S)k Fp(can)d(b)q(e)g(co)o(v)o(ered)g(b)o(y)g Fo(k)h Fp(of)e(the)h(sets,)g(then)g(eac)o(h)g(time)g(algorithm)g Fo(A)g Fp(is)g(applied)i(a)75 1039 y(fraction)d(of)g(at)f(least)h(\(1) 10 b Fn(\000)g Fp(1)p Fo(=e)f Fp(+)i Fo(\017)p Fp(\))k(of)f(the)i (remaining)g(p)q(oin)o(ts)f(are)g(co)o(v)o(ered.)20 b(Hence)c(the)f(n)o (um)o(b)q(er)g(of)75 1095 y(times)i(that)e Fo(A)i Fp(is)f(applied)j(is) e(at)e(most)h Fo(`)g Fp(where)h Fo(`)f Fp(satis\014es)g(\(1)p Fo(=e)11 b Fn(\000)g Fo(\017)p Fp(\))1320 1079 y Fl(`)1351 1095 y Fp(=)k(1)p Fo(=n)p Fp(,)h(and)g(the)h(n)o(um)o(b)q(er)f(of)75 1152 y(sets)d(used)g(in)h(the)f(co)o(v)o(er)f(is)i(at)e(most)g Fo(`k)i Fp(\(recall)g(that)e Fo(k)i Fp(is)g(the)f(n)o(um)o(b)q(er)g(of) g(sets)f(used)i(b)o(y)f(the)g(optim)o(um)75 1208 y(co)o(v)o(er\).)27 b(Simple)19 b(manipulations)h(sho)o(w)d(that)g Fo(`)g Fp(=)g(ln)9 b Fo(n=)p Fp(\(1)i Fn(\000)h Fp(ln)q(\(1)f Fn(\000)i Fo(e\017)p Fp(\)\))k Fo(<)g Fp(\(1)11 b Fn(\000)h Fo(\016)r Fp(\))c(ln)g Fo(n)18 b Fp(for)f(some)75 1264 y Fo(\016)e(>)e Fp(0)h(that)h(dep)q(ends)i(only)e(on)h Fo(\017)p Fp(.)58 b Fe(2)146 1321 y Fp(W)l(e)17 b(sa)o(y)h(that)f(a)g (p)q(olynomial)j(time)e(algorithm)f Fk(appr)n(oximates)i Fp(max)e Fo(k)q Fp(-co)o(v)o(er)h(within)h(a)e(ratio)g(of)75 1377 y(0)12 b Fo(<)h(\016)i(<)e Fp(1)h(if)i(on)f(an)o(y)f(input,)i(the) f(algorithm)g(outputs)f(a)h(n)o(um)o(b)q(er)g(that)f(is)h(b)q(et)o(w)o (een)h(opt)e(and)h Fo(\016)d Fn(\001)d Fp(opt)o(,)75 1434 y(where)j(opt)g(denotes)g(n)o(um)o(b)q(er)h(of)e(p)q(oin)o(ts)i (co)o(v)o(ered)f(b)o(y)g(the)g(optimal)h(solution.)19 b(The)12 b(follo)o(wing)h(theorem)75 1490 y(impro)o(v)o(es)j(on)h(Prop) q(osition)g(12)f(in)h(t)o(w)o(o)e(resp)q(ects:)23 b(appro)o(ximation)16 b(need)i(not)e(b)q(e)h(constructiv)o(e,)g(and)75 1547 y(the)e(assumption)h Fo(N)5 b(P)18 b Fn(6\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)719 1530 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))899 1547 y Fp(\))15 b(is)h(w)o(eak)o(ened)f(to)g Fo(P)k Fn(6)p Fp(=)13 b Fo(N)5 b(P)h Fp(.)75 1653 y Fg(Theorem)15 b(13)23 b Fk(F)m(or)f(any)h Fo(\017)h(>)g Fp(0)p Fk(,)g(max)f Fo(k)q Fk(-c)n(over)g(c)n(annot)f(b)n(e)g(appr)n(oximate)n(d)i(in)e(p)n (olynomial)g(time)75 1709 y(within)16 b(a)h(r)n(atio)f(of)h Fp(\(1)9 b Fn(\000)i Fp(1)p Fo(=e)e Fp(+)i Fo(\017)p Fp(\))p Fk(,)16 b(unless)f Fo(P)k Fp(=)13 b Fo(N)5 b(P)h Fk(.)146 1816 y Fg(Pro)q(of:)22 b Fp(W)l(e)17 b(sho)o(w)f(a)h (reduction)h(from)e(appro)o(ximating)g(max)h(3SA)l(T-5)g(to)f(appro)o (ximating)g(max)75 1872 y Fo(k)q Fp(-co)o(v)o(er.)j(The)13 b(v)m(alue)h(of)f Fo(k)h Fp(for)f(the)g Fo(k)q Fp(-co)o(v)o(er)g (problem)g(will)i(b)q(e)f(denoted)g(b)o(y)f Fo(k)1418 1856 y Fy(0)1429 1872 y Fp(,)h(so)e(as)h(to)f(distinguish)k(it)75 1929 y(from)10 b(the)h(n)o(um)o(b)q(er)h(of)e(pro)o(v)o(ers)g(in)i(the) f(underlying)i Fo(k)q Fp(-pro)o(v)o(er)e(pro)q(of)f(system,)h(and)g (from)g(the)g(parameter)75 1985 y Fo(k)16 b Fp(that)f(this)g(n)o(um)o (b)q(er)h(induces)h(for)d(partition)i(systems.)146 2042 y(The)11 b(pro)q(of)g(closely)i(mimics)g(that)d(for)h(set)g(co)o(v)o (er,)g(and)h(the)g(reader)f(is)h(assumed)f(to)g(b)q(e)h(familiar)h (with)75 2098 y(the)e(reduction)h(of)f(Section)h(4)f(and)g(the)h(pro)q (of)e(of)h(Lemma)g(7.)19 b(Unlik)o(e)12 b(the)f(case)h(for)e(set)h(co)o (v)o(er,)g(w)o(e)g(set)g(the)75 2154 y(parameter)16 b Fo(`)h Fp(\(n)o(um)o(b)q(er)g(of)g(rep)q(etitions\))h(to)e(b)q(e)i (some)f(large)g(constan)o(t)f(\(rather)g(than)h(\002\(log)8 b(log)h Fo(n)p Fp(\)\).)75 2211 y(F)l(or)15 b(this)h(reason)g(w)o(e)f (shall)i(get)e(NP-hardness)h(results)h(rather)e(than)g(results)h(under) h(the)f(assumption)75 2267 y(that)j Fo(N)5 b(P)25 b Fn(6\032)20 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)517 2251 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))697 2267 y Fp(\).)32 b(The)20 b(explicit)h(construction)f(of)f(partition)h(systems)e(b)q(ecomes)75 2324 y(simpler.)23 b(Recall)18 b(that)d Fo(L)e Fp(=)h(2)607 2307 y Fl(`)639 2324 y Fp(and)i(let)h Fo(m)c Fp(=)h Fo(k)922 2307 y Fl(L)964 2324 y Fp(\(the)i(n)o(um)o(b)q(er)g(of)f(p)q(oin)o(ts)i (in)f(the)g(partition)g(system)75 2380 y(is)h(no)o(w)f(a)h(constan)o(t) e(that)h(dep)q(ends)i(on)f(the)g(n)o(um)o(b)q(er)g(of)f(pro)o(v)o(ers)g (and)h(the)f(n)o(um)o(b)q(er)h(of)f(rep)q(etitions\).)75 2437 y(T)l(reat)d(the)g(p)q(oin)o(ts)h(in)g(a)f(partition)h(system)f (as)g(v)o(ectors)f(in)j Fn(f)p Fp(0)p Fo(;)8 b(:)g(:)g(:)t(;)g(k)f Fn(\000)f Fp(1)p Fn(g)1354 2420 y Fl(L)1380 2437 y Fp(,)13 b(and)h(let)f(the)h Fo(i)p Fp(th)f Fk(p)n(artition)952 2581 y Fp(17)p eop %%Page: 18 18 18 17 bop 75 311 a Fp(partition)17 b(the)g(p)q(oin)o(ts)g(in)o(to)g Fo(k)g Fp(disjoin)o(t)h(subsets)f(according)g(to)f(their)h(v)m(alue)h (on)f(the)g Fo(i)p Fp(th)f(co)q(ordinate.)75 368 y(Clearly)l(,)e(an)o (y)f(collection)i(of)e Fo(j)i Fp(subsets)f(that)e(app)q(ear)i(in)g (pairwise)g(disjoin)o(t)g(partitions)f(co)o(v)o(ers)g(exactly)75 424 y(\(1)d Fn(\000)g Fp(\(1)f Fn(\000)i Fp(1)p Fo(=k)q Fp(\))356 408 y Fl(j)373 424 y Fp(\))p Fo(m)k Fp(p)q(oin)o(ts.)146 481 y(By)i(p)q(erforming)h(the)g(reduction)g(of)f(Section)i(4,)e(w)o(e) h(create)f(an)g(instance)i(of)e(max)g Fo(k)1640 464 y Fy(0)1652 481 y Fp(-co)o(v)o(er)g(with)75 537 y Fo(k)100 521 y Fy(0)124 537 y Fp(=)c Fo(k)q(Q)p Fp(.)20 b(If)15 b(the)g(original)i(3CNF-5)d(form)o(ula)g(is)i(satis\014able,)f(then)h (all)g Fo(N)j Fp(p)q(oin)o(ts)c(can)h(b)q(e)f(co)o(v)o(ered)g(b)o(y)75 594 y Fo(k)q(Q)i Fp(sets.)26 b(W)l(e)17 b(sk)o(etc)o(h)g(the)g(pro)q (of)g(that)f(if)i(only)g(a)e(\(1)11 b Fn(\000)h Fo(\017)1089 577 y Fy(0)1101 594 y Fp(\)-fraction)17 b(of)g(the)g(clauses)h(of)f (the)g(original)75 650 y(form)o(ula)g(are)g(sim)o(ultaneously)h (satis\014able,)h(then)e Fo(k)q(Q)h Fp(sets)e(can)i(co)o(v)o(er)e(at)h (most)f(\(1)11 b Fn(\000)h Fp(1)p Fo(=e)f Fp(+)h Fo(g)r Fp(\()p Fo(k)q Fp(\)\))p Fo(N)75 707 y Fp(p)q(oin)o(ts,)j(where)h Fo(g)r Fp(\()p Fo(k)q Fp(\))11 b Fn(!)i Fp(0)i(as)g Fo(k)f Fn(!)f(1)p Fp(.)146 763 y(Assume)f(that)f(a)g(\(1)s Fn(\000)s Fp(1)p Fo(=e)s Fp(+)s Fo(\017)p Fp(\)-fraction)j(of)e(the)g(p)q(oin)o (ts)g(are)g(co)o(v)o(ered,)g(and)g(deriv)o(e)g(a)g(con)o(tradiction.)75 819 y(In)j(analogy)g(to)f(the)h(pro)q(of)f(of)g(Lemma)h(7,)f(call)i Fo(r)g Fk(go)n(o)n(d)e Fp(if)i(t)o(w)o(o)d(conditions)j(hold:)k Fo(w)1528 826 y Fl(r)1560 819 y Fn(\024)13 b Fp(3)p Fo(k)q(=\017)p Fp(,)h(and)h(the)75 876 y Fo(w)108 883 y Fl(r)145 876 y Fp(sets)j(that)f(participate)i(in)h(co)o(v)o(ering)e(p)q(oin)o(ts)h (in)g(the)f(partition)h(system)f Fo(r)h Fp(con)o(tain)f(at)g(least)g(t) o(w)o(o)75 932 y(sets)d(from)f(the)i(same)f(partition.)75 1039 y Fg(Prop)q(osition)k(14)k Fk(The)16 b(fr)n(action)g(of)g(go)n(o)n (d)g Fo(r)h Fk(is)f(at)h(le)n(ast)e Fo(\017=)p Fp(3)p Fk(.)146 1145 y Fg(Pro)q(of:)k Fp(The)c(a)o(v)o(erage)f(v)m(alue)i(\(o) o(v)o(er)d(the)i(c)o(hoice)h(of)e Fo(r)q Fp(\))h(of)f Fo(w)1197 1152 y Fl(r)1230 1145 y Fp(is)i(exactly)f Fo(k)h Fp(\(similar)f(to)f(the)h(pro)q(of)75 1201 y(of)f(Prop)q(osition)h (8\).)k(Hence)d(the)e(fraction)h(of)f Fo(r)h Fp(with)g Fo(w)1046 1208 y Fl(r)1077 1201 y Fo(>)e Fp(3)p Fo(k)q(=\017)i Fp(is)g(at)f(most)g Fo(\017=)p Fp(3.)19 b(Ev)o(en)c(if)g(all)h(p)q(oin) o(ts)75 1258 y(of)c(the)h(resp)q(ectiv)o(e)h(partition)f(systems)g(of)f (these)h Fo(r)h Fp(are)e(co)o(v)o(ered,)h(the)g(a)o(v)o(erage)f(n)o(um) o(b)q(er)h(of)f(p)q(oin)o(ts)i(that)75 1314 y(need)20 b(to)e(b)q(e)h(co)o(v)o(ered)g(from)f(eac)o(h)h(other)f(partition)h (system)g(is)g(at)f(least)h(\(1)12 b Fn(\000)h Fp(1)p Fo(=e)f Fp(+)h(2)p Fo(\017=)p Fp(3\))p Fo(m)p Fp(.)30 b(The)75 1371 y(a)o(v)o(erage)14 b(v)m(alue)i(of)f Fo(w)440 1378 y Fl(r)474 1371 y Fp(for)f(these)i(other)f Fo(r)h Fp(is)f(not)g(larger)g(than)g Fo(k)q Fp(.)146 1427 y(No)o(w)k(assume)h (that)g(the)g(fraction)g(of)g(go)q(o)q(d)g Fo(r)h Fp(is)g(less)f(than)h Fo(\017=)p Fp(3)f(and)g(deriv)o(e)h(a)f(con)o(tradiction.)75 1484 y(Ev)o(en)c(if)h(all)g(p)q(oin)o(ts)f(of)g(the)g(go)q(o)q(d)g (partition)g(systems)g(are)g(co)o(v)o(ered,)f(the)i(a)o(v)o(erage)d(n)o (um)o(b)q(er)j(of)f(p)q(oin)o(ts)75 1540 y(that)e(need)i(to)e(b)q(e)i (co)o(v)o(ered)e(from)g(eac)o(h)h(remaining)h(partition)f(system)g(is)g (at)f(least)h(\(1)9 b Fn(\000)h Fp(1)p Fo(=e)f Fp(+)h Fo(\017=)p Fp(3\))p Fo(m)p Fp(.)75 1597 y(The)15 b(a)o(v)o(erage)f(v)m (alue)i(of)f Fo(w)533 1604 y Fl(r)566 1597 y Fp(for)g(the)g(remaining)h (partition)f(systems)g(is)g(at)g(most)f(\(1)9 b(+)h Fo(\017=)p Fp(3\))p Fo(k)q Fp(.)19 b(F)l(or)c(the)75 1653 y(function)e Fo(h)p Fp(\()p Fo(j)s Fp(\))e(=)i(\(1)s Fn(\000)s Fp(\(1)s Fn(\000)s Fp(1)p Fo(=k)q Fp(\))646 1636 y Fl(j)664 1653 y Fp(\))p Fo(m)f Fp(whic)o(h)g(describ)q(es)i(ho)o(w)d(man)o(y)g(p)q (oin)o(ts)h(are)g(co)o(v)o(ered)f(b)o(y)h Fo(j)i Fp(subsets,)75 1709 y(the)e(second)h(deriv)m(ativ)o(e)h(is)e(nev)o(er)h(p)q(ositiv)o (e.)20 b(Hence)13 b(the)f(a)o(v)o(erage)f(n)o(um)o(b)q(er)i(of)f(p)q (oin)o(ts)h(that)e(are)h(co)o(v)o(ered)75 1766 y(p)q(er)17 b(partition)g(is)g(maximized)h(when)f(all)h Fo(w)842 1773 y Fl(r)877 1766 y Fp(are)e(equal,)i(and)e(then)h(it)g(is)g(\(1)11 b Fn(\000)g Fp(\(1)g Fn(\000)g Fp(1)p Fo(=k)q Fp(\))1662 1749 y Fm(\(1+)p Fl(\017=)p Fm(3\))p Fl(k)1805 1766 y Fp(\))p Fo(m)p Fp(,)75 1822 y(whic)o(h)16 b(is)g(smaller)g(than)f(\(1)9 b Fn(\000)i Fp(1)p Fo(=e)e Fp(+)i Fo(\017=)p Fp(3\))p Fo(m)k Fp(\(for)f(large)h(enough)h Fo(k)q Fp(\).)57 b Fe(2)146 1879 y Fp(No)o(w)16 b(pro)q(ceed)i(as)f(in)h(Prop)q(osition)g (9,)f(using)h(the)f(fact)g(that)g Fo(w)1261 1886 y Fl(r)1295 1879 y Fn(\024)g Fp(3)p Fo(k)q(=\017)g Fp(for)f(go)q(o)q(d)i Fo(r)q Fp(.)25 b(This)18 b(will)75 1935 y(giv)o(e)h(a)g(strategy)e(for) h(the)h(pro)o(v)o(ers)f(that)g(causes)h(the)g(v)o(eri\014er)g(to)g(w)o (eakly)g(accept)g(with)g(probabilit)o(y)82 1974 y Fl(\017)p 80 1981 18 2 v 80 2007 a Fm(3)103 1992 y Fp(\()137 1974 y Fl(\017)p 126 1981 37 2 v 126 2007 a Fm(3)p Fl(k)167 1992 y Fp(\))185 1975 y Fm(2)205 1992 y Fp(.)g(This)d(is)g(larger)f (than)g Fo(k)647 1975 y Fm(2)667 1992 y Fp(2)690 1975 y Fy(\000)p Fl(c`)749 1992 y Fp(,)f(for)h(large)g(enough)h Fo(`)p Fp(.)k(Con)o(tradiction.)57 b Fe(2)75 2135 y Fq(6)69 b(Re\014nem)o(en)n(ts)75 2236 y Fp(In)22 b(our)f(hardness)h(of)f(appro) o(ximation)g(result)h(for)f(set)g(co)o(v)o(er,)h Fo(\017)f Fp(need)i(not)e(b)q(e)h(constan)o(t.)37 b(It)22 b(ma)o(y)75 2293 y(b)q(e)d(a)f(decreasing)i(function)f(of)f Fo(n)p Fp(.)31 b(T)l(o)18 b(mak)o(e)g Fo(\017)h Fp(as)f(small)h(as)f(p)q (ossible,)j(w)o(e)d(strengthen)h(the)g Fo(N)5 b(P)24 b Fn(62)75 2349 y Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)263 2333 y Fm(log)t(log)h Fl(n)388 2349 y Fp(\))11 b(assumption.)18 b(Observ)o(e)12 b(that)e(the)h(lo)o(w)g(order)f(terms)h(in)h(Prop)q (osition)f(15)f(are)h(not)g(far)75 2406 y(from)f(optimal,)i(as)f(the)g (greedy)g(algorithm)g(appro)o(ximates)g(set)f(co)o(v)o(er)h(within)h (ln)c Fo(n)r Fn(\000)r Fp(ln)h(ln)g Fo(n)r Fp(+)r Fo(O)q Fp(\(1\))h([33)o(].)952 2581 y(18)p eop %%Page: 19 19 19 18 bop 75 311 a Fg(Prop)q(osition)19 b(15)k Fk(If)17 b(for)g(some)h Fo(\021)e(>)f Fp(0)p Fk(,)i Fo(N)5 b(P)21 b Fn(6\032)15 b Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\(2)1176 295 y Fl(n)1197 283 y Ff(\021)1217 311 y Fp(\))p Fk(,)17 b(then)h(for)f(some)h(c)n(onstant)e Fo(c)1762 295 y Fy(0)1788 311 y Fo(>)f Fp(0)p Fk(,)75 368 y(ther)n(e)h(is)f(no)h(p)n(olynomial)f (time)h(algorithm)g(that)h(appr)n(oximates)f(set)g(c)n(over)f(within)h Fp(ln)9 b Fo(n)g Fn(\000)g Fo(c)1676 351 y Fy(0)1688 368 y Fp(\(ln)f(ln)g Fo(n)p Fp(\))1841 351 y Fm(2)1861 368 y Fk(.)146 474 y Fg(Pro)q(of:)20 b Fp(By)c(the)f(NP-completeness)i (of)e(appro)o(ximating)h(MAX)f(3SA)l(T-5,)g(if)h(there)g(is)g(a)f (problem)75 531 y(in)f(NP)f(that)f(do)q(es)h(not)f(ha)o(v)o(e)h Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\(2)799 514 y Fl(n)820 502 y Ff(\021)840 531 y Fp(\))12 b(algorithms)h(for)f(some)h Fo(\021)h(>)f Fp(0,)f(then)i(max)e(3SA)l(T-5)h(is)g(not)75 587 y(appro)o(ximable)g(in)h Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\(2)624 570 y Fl(O)q Fm(\()p Fl(n)687 559 y Fc(2)p Ff(\021)719 570 y Fm(\))735 587 y Fp(\),)12 b(for)g(some)g(\(other\))g (0)g Fo(<)h(\021)h(<)f Fp(1.)18 b(P)o(erforming)12 b(the)h(reduction)g (of)75 643 y(Section)i(4)f(under)h(this)g(stronger)e(assumption,)h(w)o (e)g(can)h(c)o(ho)q(ose)f(parameters)g(of)f(the)i(reduction)g(\(suc)o (h)75 700 y(as)c Fo(k)h Fp(and)g Fo(m)p Fp(\))f(to)f(b)q(e)i(larger,)g (obtaining)g(smaller)g(lo)o(w)f(order)g(terms)g(in)h(the)g(hardness)f (of)g(appro)o(ximation)75 756 y(result)16 b(for)e(set)h(co)o(v)o(er.)k (Sp)q(eci\014call)q(y)l(,)f(w)o(e)d(c)o(ho)q(ose:)146 838 y(Num)o(b)q(er)g(of)g(p)q(oin)o(ts)h(in)g(a)e(partition)i(system:)j Fo(m)13 b Fp(=)g Fo(e)1080 821 y Fl(n)1101 809 y Ff(\021)1123 838 y Fp(.)146 894 y(Num)o(b)q(er)i(of)g(pro)o(v)o(ers:)k Fo(k)14 b Fp(=)669 876 y Fm(ln)5 b Fl(m)p 640 883 126 2 v 640 910 a Fm(3)g(ln)g(ln)h Fl(m)783 894 y Fn(')13 b Fo(n)858 878 y Fl(\021)879 894 y Fp(.)146 951 y(Num)o(b)q(er)21 b(of)f(random)g(bits)h(of)g(v)o(eri\014er:)31 b Fo(`)22 b Fp(=)g Fo(c)1006 934 y Fy(00)1034 951 y Fp(log)9 b Fo(n)p Fp(,)22 b(for)e(some)g(su\016cien)o(tly)i(large)f(constan)o(t)75 1007 y Fo(c)95 991 y Fy(00)129 1007 y Fo(>)12 b Fp(0.)146 1088 y(W)l(e)k(\014rst)g(v)o(erify)h(that)f(the)g(ab)q(o)o(v)o(e)h(com) o(bination)g(of)f(parameters)f(is)i(p)q(ossible.)26 b(Recall)18 b(from)e(Sec-)75 1145 y(tion)g(2)e(that)h(w)o(e)g(need)h Fo(k)h Fp(co)q(dew)o(ords)e(of)g(length)g Fo(`)h Fp(suc)o(h)f(that)g (the)g(Hamming)h(distance)g(b)q(et)o(w)o(een)f(an)o(y)75 1201 y(t)o(w)o(o)e(co)q(dew)o(ords)h(is)h(\012\()p Fo(`)p Fp(\).)k(This)14 b(is)h(p)q(ossible)h(whenev)o(er)f Fo(k)g Fp(is)g(at)f(most)f(mildly)j(exp)q(onen)o(tial)g(in)f Fo(`)g Fp(\(e.g.,)75 1258 y(b)o(y)i(taking)g(a)g(random)g(co)q(de\),)g (whic)o(h)h(holds)g(for)f(the)g(c)o(hoice)h(of)f Fo(`)f Fp(=)g Fo(c)1330 1241 y Fy(00)1359 1258 y Fp(log)8 b Fo(n)p Fp(.)26 b(Another)17 b(thing)h(that)75 1314 y(needs)c(to)f(b)q (e)g(c)o(hec)o(k)o(ed)h(is)g(that)e(the)h(pro)q(of)g(of)g(Lemma)g(7)g (still)i(go)q(es)e(through,)g(and)g(w)o(e)g(shall)h(v)o(erify)g(this)75 1371 y(shortly)l(.)146 1427 y(W)l(e)k(analyze)h(the)f(hardness)g(of)g (appro)o(ximation)g(ratio)g(that)f(these)h(parameters)g(giv)o(e.)29 b(Observ)o(e)75 1484 y(that)16 b(for)g Fo(`)g Fp(as)g(ab)q(o)o(v)o(e,)h (the)f(n)o(um)o(b)q(er)h(of)f(random)g(strings)h(a)o(v)m(ailable)h(to)e (the)h(v)o(eri\014er)g(is)g Fo(R)e Fp(=)g(\(5)p Fo(n)p Fp(\))1809 1467 y Fl(`)1840 1484 y Fp(=)75 1540 y(\(5)p Fo(n)p Fp(\))161 1524 y Fl(c)6 b Fm(log)f Fl(n)256 1540 y Fp(.)28 b(The)18 b(total)g(n)o(um)o(b)q(er)g(of)f(p)q(oin)o(ts)i(in)f (the)g(set)g(co)o(v)o(er)f(problem)i(is)f Fo(N)k Fp(=)17 b Fo(mR)p Fp(.)28 b(Recall)20 b(that)75 1597 y(if)d(the)f(original)i (3CNF-5)d(form)o(ula)h(is)h(satis\014able)g(then)g Fo(k)q(Q)f Fp(sets)g(ma)o(y)f(b)q(e)i(used)g(to)f(co)o(v)o(er)g(all)h(p)q(oin)o (ts,)75 1653 y(where)f Fo(k)h Fp(is)f(the)g(n)o(um)o(b)q(er)g(of)f(pro) o(v)o(ers,)g(and)h Fo(Q)f Fp(is)i(the)f(n)o(um)o(b)q(er)g(of)f (di\013eren)o(t)h(questions)g(that)f(a)h(single)75 1709 y(pro)o(v)o(er)e(can)i(receiv)o(e.)k(If)c(only)f(a)g(\(1)10 b Fn(\000)g Fo(\017)762 1693 y Fy(0)774 1709 y Fp(\)-fraction)15 b(of)g(the)g(clauses)h(of)f(the)g(original)h(3CNF-5)e(form)o(ula)75 1766 y(are)f(sim)o(ultaneously)i(satis\014able)f(then)g(\(1)7 b Fn(\000)g Fp(2)p Fo(f)e Fp(\()p Fo(k)q Fp(\)\))p Fo(k)q(Q)j Fp(ln)e Fo(m)14 b Fp(sets)f(are)g(required)i(in)f(order)f(to)g(co)o(v)o (er)g(all)75 1822 y(p)q(oin)o(ts.)21 b(The)16 b(ratio)e(b)q(et)o(w)o (een)i(these)g(t)o(w)o(o)e(cases)h(is)h(\(1)10 b Fn(\000)g Fp(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))j(ln)f Fo(m)p Fp(,)15 b(whic)o(h)i(w)o(e)e(need)h(to)f(express)g(as)75 1879 y(a)g(function)h(of)f Fo(N)5 b Fp(,)14 b(the)h(total)g(n)o(um)o(b) q(er)g(of)g(p)q(oin)o(ts)h(in)g(the)f(instance)h(of)f(set)g(co)o(v)o (er.)146 1935 y(F)l(rom)g(Lemma)i(6)f(it)g(follo)o(ws)h(that)f(in)h Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\()p Fo(m)1055 1919 y Fl(O)q Fm(\(log)s Fl(m)p Fm(\))1193 1935 y Fp(\))15 b(=)g Fo(Z)s(T)6 b(I)t(M)f(E)s Fp(\(2)1494 1919 y Fl(O)q Fm(\()p Fl(n)1557 1907 y Fc(2)p Ff(\021)1589 1919 y Fm(\))1605 1935 y Fp(\))16 b(w)o(e)g(can)h(con-)75 1992 y(struct)d(partition)i(systems)e(with)h Fo(f)5 b Fp(\()p Fo(k)q Fp(\))12 b(=)h(2)p Fo(=k)h Fp(=)f(6)8 b(ln)f(ln)i Fo(m=)f Fp(ln)f Fo(m)p Fp(.)20 b(F)l(rom)14 b(our)h(c)o(hoice)h(of)e(parameters,)75 2048 y(ln)8 b Fo(m)13 b Fp(=)g Fo(n)248 2032 y Fl(\021)282 2048 y Fp(and)h(ln)8 b Fo(N)18 b Fp(=)13 b(ln)8 b Fo(mR)k Fp(=)h Fo(n)724 2032 y Fl(\021)752 2048 y Fp(+)6 b Fo(O)q Fp(\(\(log)i Fo(n)p Fp(\))976 2032 y Fm(2)996 2048 y Fp(\),)13 b(implying)i(that)e (ln)8 b Fo(m)13 b Fn(\025)g Fp(ln)8 b Fo(N)j Fn(\000)6 b Fo(O)q Fp(\(\(ln)i(ln)h Fo(N)c Fp(\))1826 2032 y Fm(2)1845 2048 y Fp(\).)75 2105 y(Altogether)15 b(w)o(e)g(ha)o(v)o(e)g(that)f (\(1)c Fn(\000)g Fp(2)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\)\))j(ln)f Fo(m)13 b Fn(\025)g Fp(ln)8 b Fo(N)15 b Fn(\000)10 b Fo(O)q Fp(\(\(ln)e(ln)h Fo(N)c Fp(\))1314 2088 y Fm(2)1332 2105 y Fp(\),)15 b(as)g(needed.)146 2161 y(Finally)l(,)e(recall)g(that) e(for)g(the)h(pro)q(of)f(of)h(Lemma)f(7)h(w)o(e)f(required)i(that)e(4)p Fo(f)5 b Fp(\()p Fo(k)q Fp(\))p Fo(=)p Fp(\()p Fo(k)i Fp(ln)i Fo(m)p Fp(\))1637 2145 y Fm(2)1669 2161 y Fo(>)k(k)1742 2145 y Fm(2)1765 2161 y Fn(\001)s Fp(2)1804 2145 y Fy(\000)p Fl(c`)1862 2161 y Fp(,)75 2218 y(whic)o(h)j(indeed)h(holds)f(when)g Fo(`)f Fp(is)g(a)g(su\016cien)o(tly)i(large)e(m)o(ultiple)i(of)e(log)8 b Fo(n)p Fp(.)58 b Fe(2)146 2274 y Fp(An)12 b(op)q(en)h(question)g (that)f(is)g(\\traditionally")h(\(ev)o(er)f(since)i([26)o(]\))d(asso)q (ciated)i(with)f(the)h(hardness)f(of)75 2330 y(appro)o(ximating)i(set)f (co)o(v)o(er)g(is)i(that)e(of)g(constructing)h(t)o(w)o(o)e(pro)o(v)o (er)h(one)h(round)g(pro)q(of)g(systems)f(for)g(NP)l(,)75 2387 y(in)18 b(whic)o(h)g(the)f(amoun)o(t)f(of)g(randomness)h(used)h(b) o(y)f(the)g(v)o(eri\014er)g(is)h(logarithmic,)g(the)f(answ)o(er)f (length)75 2443 y(of)k(the)h(pro)o(v)o(ers)e(is)i(logarithmic,)i(and)d (the)h(error)f(is)h(p)q(olynomially)i(small.)36 b(Recall)23 b(that)c(our)i(new)952 2581 y(19)p eop %%Page: 20 20 20 19 bop 75 311 a Fo(k)q Fp(-pro)o(v)o(er)12 b(pro)q(of)h(system)f(is) i(a)e(v)m(ariation)i(on)f(the)g(lo)o(w)f(error)g(t)o(w)o(o)g(pro)o(v)o (er)g(pro)q(of)h(system)f(of)h(Section)g(2.2.)75 368 y(Conceiv)m(ably)l(,)22 b(if)d(w)o(e)g(had)g(as)g(a)f(starting)h(p)q (oin)o(t)g(a)g(lo)o(w)g(error)f(t)o(w)o(o)g(pro)o(v)o(er)g(pro)q(of)h (system)f(in)i(whic)o(h)75 424 y(the)f(v)o(eri\014er)h(uses)g Fo(O)q Fp(\(log)7 b Fo(n)p Fp(\))20 b(random)e(bits,)j(our)e(tec)o (hniques)h(w)o(ould)g(lead)g(to)e(a)h(pro)q(of)g(of)g(hardness)75 481 y(of)d(appro)o(ximating)g(set)h(co)o(v)o(er)e(within)j(\(1)10 b Fn(\000)h Fo(\017)p Fp(\))d(ln)h Fo(n)16 b Fp(under)h(the)g (assumption)f(that)g Fo(P)21 b Fn(6)p Fp(=)15 b Fo(N)5 b(P)h Fp(,)17 b(rather)75 537 y(than)c Fo(N)5 b(P)18 b Fn(6\032)13 b Fo(T)6 b(I)t(M)f(E)s Fp(\()p Fo(n)504 521 y Fl(O)q Fm(\(log)t(log)g Fl(n)p Fm(\))684 537 y Fp(\).)19 b(The)13 b(n)o(um)o(b)q(er)g(of)f(random)h(bits)g(used)g(b)o (y)g(the)g(v)o(eri\014er)g(is)g(relev)m(an)o(t)75 594 y(here)h(b)q(ecause)h(w)o(e)e(construct)g(instances)i(of)e(set)g(co)o (v)o(er)g(with)h Fo(N)j Fp(=)c Fo(mR)h Fp(p)q(oin)o(ts.)19 b(F)l(or)13 b(the)h(reduction)h(to)75 650 y(b)q(e)h(p)q(olynomial,)g Fo(R)f Fp(m)o(ust)f(b)q(e)i(p)q(olynomial)g(in)g Fo(n)p Fp(,)f(implying)i(that)d(the)h(n)o(um)o(b)q(er)h(of)e(random)h(bits)g (used)75 707 y(b)o(y)h(the)h(v)o(eri\014er)g(m)o(ust)e(b)q(e)i (logarithmic)h(in)f Fo(n)p Fp(.)23 b(The)17 b(error)f(in)h(the)f(pro)q (of)g(system)g(has)g(to)g(b)q(e)h(at)f(most)75 763 y Fo(O)q Fp(\(1)p Fo(=)p Fp(\(log)7 b Fo(n)p Fp(\))303 746 y Fm(2)323 763 y Fp(\))17 b(for)g(the)h(pro)q(of)f(of)g(Lemma)h(7)f (\(or)g(a)g(similar)i(lemma\))f(to)f(go)g(through.)27 b(The)18 b(answ)o(er)75 819 y(length)c(m)o(ust)f(remain)g(logarithmic)i (so)d(that)h(the)g(n)o(um)o(b)q(er)h(of)f(subsets)g(and)h(the)f(n)o(um) o(b)q(er)h(of)f(partitions)75 876 y(in)j(a)f(partition)g(system)g(will) i(remain)f(p)q(olynomial.)146 932 y(The)k(op)q(en)h(question)g(of)f (trying)h(to)e(decrease)i Fo(R)f Fp(is)h(also)g(related)f(to)g(the)h (analysis)g(of)f(the)g(lo)o(w)75 989 y(order)e(terms)g(as)g(in)h(Prop)q (osition)f(15.)29 b(F)l(or)18 b Fo(m)f Fp(=)h(2)995 972 y Fl(n)1016 961 y Ff(\021)1038 989 y Fp(,)g(if)h Fo(R)f Fp(is)h(decreased)g(to)e Fo(O)q Fp(\()p Fo(n)1563 972 y Fl(c)1581 989 y Fp(\),)h(then)h(ln)8 b Fo(m)18 b Fp(=)75 1045 y(ln)8 b Fo(N)15 b Fn(\000)c Fo(O)q Fp(\(ln)d(ln)g Fo(N)d Fp(\).)20 b(This)c(ma)o(y)e(allo)o(w)i(to)f(reduce)h(the)f(lo)o (w)h(order)f(term)g(to)f(\002\(log)9 b(log)f Fo(n)p Fp(\))15 b(\(under)h(the)75 1102 y(complexit)o(y)j(assumption)f(of)f(Prop)q (osition)i(15\).)27 b(W)l(e)18 b(remark)f(that)h(for)f(this)h(c)o (hoice)h(of)f(parameters)75 1158 y(w)o(e)g(need)g(the)g(error)g(in)g (the)g Fo(k)q Fp(-pro)o(v)o(er)g(pro)q(of)f(system)h(to)f(b)q(e)h(p)q (olynomially)j(small)d(in)h(order)f(for)f(the)75 1215 y(pro)q(of)e(of)g(Lemma)g(7)g(to)f(go)h(through.)146 1271 y(W)l(e)i(do)g(not)g(kno)o(w)g(that)g(reducing)h(the)g(n)o(um)o(b) q(er)f(of)g(random)g(bits)h(used)g(b)o(y)f(the)g(v)o(eri\014er)h(in)g (t)o(w)o(o)75 1328 y(pro)o(v)o(er)13 b(pro)q(of)h(systems)f(is)i(a)f (necessary)g(requiremen)o(t)h(for)e(obtaining)i(tigh)o(t)f(\(up)g(to)f (lo)o(w)h(order)g(terms\))75 1384 y(NP-hardness)k(results)f(for)g(set)g (co)o(v)o(er.)25 b(Moreo)o(v)o(er,)16 b(it)h(ma)o(y)g(not)g(ev)o(en)g (b)q(e)h(a)f(su\016cien)o(t)h(requiremen)o(t,)75 1440 y(since)e(curren)o(t)f(tec)o(hniques)i(require)f(that)e(the)i(pro)q(of) f(systems)f(ha)o(v)o(e)h(v)o(ery)g(regular)g(structure.)146 1497 y(Some)i(of)g(the)g(di\016culties)j(in)o(v)o(olv)o(ed)e(in)g (reducing)h(the)e(n)o(um)o(b)q(er)h(of)f(random)g(bits)h(in)g(t)o(w)o (o)e(pro)o(v)o(er)75 1553 y(pro)q(of)f(systems)g(are)f(discussed)j(in)f ([10)o(].)75 1672 y Fh(Ac)n(kno)n(wledgemen)n(ts)75 1758 y Fp(I)i(thank)f(Moni)h(Naor,)f(Leonard)h(Sh)o(ulman,)h(and)f(Ara)o (vind)g(Sriniv)m(asan)h(for)e(a)h(preview)g(of)f([27)o(],)h(and)75 1814 y(Mihir)e(Bellare)h(for)d(his)i(commen)o(ts)f(on)g(an)g(earlier)h (v)o(ersion)g(of)e(this)i(man)o(uscript.)75 1955 y Fq(References)98 2056 y Fp([1])21 b(S.)11 b(Arora,)f(C.)f(Lund,)k(R.)d(Mot)o(w)o(ani,)g (M.)f(Sudan,)j(M.)e(Szegedy)l(.)h(\\Pro)q(of)e(v)o(eri\014cation)i(and) g(hardness)168 2112 y(of)18 b(appro)o(ximation)g(problems".)g(In)h Fk(Pr)n(o)n(c.)f(of)h(33r)n(d)g(A)o(nnual)f(Symp)n(osium)h(on)g(F)m (oundations)f(of)168 2169 y(Computer)f(Scienc)n(e,)e(14{23,)i(1992)p Fp(.)98 2256 y([2])k(S.)14 b(Arora,)e(S.)h(Safra.)f(\\Probabilistic)j (c)o(hec)o(king)g(of)d(pro)q(ofs:)19 b(a)13 b(new)g(c)o (haracterization)h(of)f(NP".)f(In)168 2313 y Fk(Pr)n(o)n(c.)k(of)h(33r) n(d)f(A)o(nnual)g(Symp)n(osium)g(on)g(F)m(oundations)f(of)i(Computer)g (Scienc)n(e,)d(2{13,)k(1992)p Fp(.)98 2400 y([3])j(L.)e(Babai,)g(L.)g (F)l(ortno)o(w,)e(C.)h(Lund,)i(\\Non-deterministic)g(exp)q(onen)o(tial) g(time)f(has)f(t)o(w)o(o-pro)o(v)o(er)168 2457 y(in)o(teractiv)o(e)e (proto)q(cols",)e Fk(Computational)j(Complexity,)f(1:3{40,)i(1991)p Fp(.)952 2581 y(20)p eop %%Page: 21 21 21 20 bop 98 311 a Fp([4])21 b(L.)11 b(Babai,)g(S.)g(Moran.)e(\\Arth)o (ur-Merlin)i(games:)17 b(a)10 b(randomized)h(pro)q(of)f(system,)h(and)g (a)f(hierarc)o(h)o(y)168 368 y(of)15 b(complexit)o(y)h(classes.")f Fk(J.)h(Computer)h(and)g(Sys.)e(Sci.)g Fp(36)f(\(1988\),)f(254{276.)98 462 y([5])21 b(M.)c(Bellare,)i(S.)e(Goldw)o(asser,)g(C.)g(Lund,)i(A.)e (Russell.)i(\\E\016cien)o(t)f(probabilistically)i(c)o(hec)o(k)m(able) 168 518 y(pro)q(ofs)15 b(and)g(applications)i(to)e(appro)o(ximation".)f (In)i Fk(Pr)n(o)n(c.)f(of)i(25th)g(A)o(nnual)e(A)o(CM)g(Symp)n(osium) 168 575 y(on)h(the)h(The)n(ory)f(of)g(Computing)p Fp(,)f(294{304,)e (1993.)98 668 y([6])21 b(M.)16 b(Ben-Or,)h(S.)f(Goldw)o(asser,)g(J.)g (Kilian,)i(A.)e(Wigderson.)g(\\Multi-pro)o(v)o(er)g(in)o(teractiv)o(e)h (pro)q(ofs:)168 725 y(ho)o(w)e(to)f(remo)o(v)o(e)g(in)o(tractabilit)o (y)i(assumptions".)f(In)g Fk(Pr)n(o)n(c.)h(of)g(20th)h(A)o(nnual)e(A)o (CM)g(Symp)n(osium)168 781 y(on)h(the)h(The)n(ory)f(of)g(Computing)p Fp(,)f(113{131,)e(1988.)98 875 y([7])21 b(V.)d(Ch)o(v)m(atal.)h(\\A)f (greedy)g(heuristic)i(for)e(the)g(set)g(co)o(v)o(ering)h(problem".)f Fk(Math.)i(Op)n(er.)f(R)n(es.,)g(4,)168 932 y(1979,)f(233{235.)98 1025 y Fp([8])j(M.)14 b(Dy)o(er,)g(A.)g(F)l(rieze.)h(\\A)f(simple)i (heuristic)g(for)e(the)h Fo(p)p Fp(-cen)o(ter)f(problem".)h Fk(Op)n(er.)g(R)n(es.)g(L)n(ett.,)g(3,)168 1082 y(1985,)j(285{288.)98 1176 y Fp([9])j(U.)d(F)l(eige,)h(S.)e(Goldw)o(asser,)h(L.)g(Lo)o(v)m (asz,)g(S.)g(Safra,)f(S.)h(Szegedy)l(.)h(\\In)o(teractiv)o(e)e(pro)q (ofs)h(and)g(the)168 1232 y(hardness)f(of)g(appro)o(ximating)f (cliques".)i Fk(Journal)g(of)g(the)g(A)o(CM,)e(V)m(ol.)h(43,)h(No.)g (2,)g(1996,)h(268{)168 1289 y(292.)75 1382 y Fp([10])i(U.)14 b(F)l(eige,)g(J.)f(Kilian.)i(\\Imp)q(ossibilit)o(y)h(results)e(for)f (recycling)i(random)e(bits)h(in)g(t)o(w)o(o)f(pro)o(v)o(er)f(pro)q(of) 168 1439 y(systems".)17 b Fk(Pr)n(o)n(c.)g(of)i(27th)f(A)o(nnual)g(A)o (CM)f(Symp)n(osium)h(on)g(the)g(The)n(ory)g(of)h(Computing)p Fp(,)e(457{)168 1495 y(468,)d(1995.)75 1589 y([11])21 b(U.)13 b(F)l(eige,)h(J.)f(Kilian.)i(\\Zero)d(kno)o(wledge)i(and)f(the) g(c)o(hromatic)g(n)o(um)o(b)q(er".)g Fk(Pr)n(o)n(c.)g(of)i(11th)g(A)o (nnual)168 1645 y(IEEE)h(Confer)n(enc)n(e)e(on)i(Computational)h (Complexity)p Fp(,)d(1996.)75 1739 y([12])21 b(U.)h(F)l(eige,)h(L.)f (Lo)o(v)m(asz.)f(\\Tw)o(o)f(pro)o(v)o(er)h(one)h(round)f(pro)q(of)h (systems:)32 b(their)22 b(p)q(o)o(w)o(er)f(and)g(their)168 1796 y(problems".)f(In)g Fk(Pr)n(o)n(c.)f(of)i(24th)g(A)o(nnual)e(A)o (CM)g(Symp)n(osium)h(on)g(the)g(The)n(ory)g(of)g(Computing)p Fp(,)168 1852 y(733{744,)13 b(1992.)75 1946 y([13])21 b(L.)c(F)l(ortno)o(w,)f(J.)g(Romp)q(el,)j(M.)d(Sipser,)h(\\On)h(the)e (P)o(o)o(w)o(er)g(of)g(Multi-Pro)o(v)o(er)h(In)o(teractiv)o(e)g(Proto-) 168 2002 y(cols",)e Fk(The)n(or)n(etic)n(al)g(Computer)i(Scienc)n(e)d Fp(134,)g(545{557,)f(1994.)75 2096 y([14])21 b(S.)16 b(Goldw)o(asser,)e(S.)h(Micali,)i(C.)d(Rac)o(k)o(o\013.)g(\\The)i(kno)o (wledge)f(complexit)o(y)i(of)d(in)o(teractiv)o(e)i(pro)q(of-)168 2153 y(systems.")e Fk(SIAM)h(J.)h(Comp.)g Fg(18)f Fp(\(1989\),)e (186{208.)75 2247 y([15])21 b(S.)c(Guha,)f(S.)h(Kh)o(uller.)h(\\Greedy) e(strik)o(es)h(bac)o(k:)22 b(impro)o(v)o(ed)17 b(facilit)o(y)h(lo)q (cation)f(algorithms".)f(In)168 2303 y Fk(Pr)n(o)n(c.)g(Ninth)g(A)o (nnual)f(A)o(CM-SIAM)f(Symp)n(osium)j(on)f(Discr)n(ete)f(A)o (lgorithms,)h(1998)p Fp(.)75 2397 y([16])21 b(M.)e(Halldorsson.)g (\\Appro)o(ximating)g(the)h(minim)o(um)g(maximal)f(indep)q(endenc)q(e)j (n)o(um)o(b)q(er".)d Fk(In-)168 2453 y(form.)e(Pr)n(o)n(c)n(ess.)e(L)n (ett.)g(46)i(\(1993\))f(169{172)p Fp(.)952 2581 y(21)p eop %%Page: 22 22 22 21 bop 75 311 a Fp([17])21 b(J.)14 b(H)-6 b(\027)-28 b(astad.)13 b(\\Clique)i(is)f(hard)g(to)f(appro)o(ximate)g(within)i Fo(n)1180 295 y Fm(1)p Fy(\000)p Fl(\017)1242 311 y Fp(.")e(In)h Fk(Pr)n(o)n(c.)h(37th)g(IEEE)f(Symp.)h(on)168 368 y(F)m(oundations)h (of)g(Computer)h(Scienc)n(e)p Fp(,)d(627{636,)e(1996.)75 457 y([18])21 b(J.)14 b(H)-6 b(\027)-28 b(astad.)12 b(\\Some)h(optimal) g(inappro)o(ximabilit)o(y)i(results".)e(In)h Fk(pr)n(o)n(c.)g(29th)h(A) o(nnual)f(A)o(CM)f(Sym-)168 513 y(p)n(osium)k(on)f(The)n(ory)g(of)g (Computing)p Fp(,)f(1{10,)f(1997.)75 602 y([19])21 b(J.)c(Hastad,)e(S.) i(Phillips,)i(S.)d(Safra.)f(\\A)h(w)o(ell)i(c)o(haracterized)f(appro)o (ximation)f(problem".)h Fk(Pr)n(o)n(c.)168 658 y(2nd)g(Isr)n(ael)e (Symp.)h(on)g(The)n(ory)g(of)g(Computing)h(and)f(Systems,)f(261{265,)j (1993)p Fp(.)75 747 y([20])j(D.)15 b(Ho)q(c)o(h)o(baum)h(\(editor\).)f (Appro)o(ximation)g(Algorithms)h(for)f(NP-hard)h(Problems.)f(PWS)g (Pub-)168 803 y(lishing)j(Compan)o(y)l(,)c(Boston,)g(1997.)75 892 y([21])21 b(D.)15 b(Ho)q(c)o(h)o(baum,)g(D.)g(Shmo)o(ys.)g(\\A)g(b) q(est)h(p)q(ossible)h(appro)o(ximation)f(algorithm)f(for)g(the)h Fo(k)q Fp(-cen)o(ter)168 948 y(problem".)g Fk(Math.)g(Op)n(er.)g(R)n (es.,)g(10,)g(1985,)i(180{184.)75 1037 y Fp([22])j(W.)16 b(Hsu,)g(G.)g(Nemhauser.)g(\\Easy)f(and)i(hard)f(b)q(ottlenec)o(k)h(lo) q(cation)g(problems".)f Fk(Discr)n(ete)h(Ap-)168 1094 y(plie)n(d)f(Math.,)h(1,)f(1979,)h(209{216.)75 1182 y Fp([23])k(D.)13 b(Johnson.)g(\\Appro)o(ximation)h(algorithms)f(for)f (com)o(binatorial)i(problems".)f Fk(J.)h(Comput.)i(Sys-)168 1239 y(tem)h(Sci.)e(9,)i(1974,)g(256{278)p Fp(.)75 1328 y([24])k(L.)14 b(Lo)o(v)m(asz.)g(\\On)g(the)g(ratio)g(of)f(the)h (optimal)h(in)o(tegral)f(and)g(fractional)g(co)o(v)o(ers".)f Fk(Discr)n(ete)h(Math-)168 1384 y(ematics)j(13)f(\(1975\))h(383{390)p Fp(.)75 1473 y([25])k(C.)16 b(Lund,)i(L.)f(F)l(ortno)o(w,)e(H.)h (Karlo\013,)g(N.)g(Nisan.)h(\\Algebraic)h(Metho)q(ds)e(for)g(In)o (teractiv)o(e)h(Pro)q(of)168 1529 y(Systems.")e Fk(J.)h(A)o(CM)p Fp(,)e Fg(39)h Fp(\(1992\),)e(859{868.)75 1618 y([26])21 b(C.)13 b(Lund,)i(M.)d(Y)l(annak)m(akis.)i(\\On)g(the)g(hardness)f(of)g (appro)o(ximating)h(minimization)h(problems".)168 1674 y Fk(JA)o(CM)g(41\(5\),)i(1994,)g(960{981.)75 1763 y Fp([27])k(M.)c(Naor,)f(L.)g(Sc)o(h)o(ulman,)i(A.)f(Sriniv)m(asan.)h (\\Splitters)f(and)g(near-optimal)h(derandomization".)168 1819 y Fk(Pr)n(o)n(c.)d(of)h(36th)g(A)o(nnual)f(Symp)n(osium)g(of)h(F)m (oundations)f(of)h(Computer)g(Scienc)n(e)p Fp(,)c(182{191,)g(1995.)75 1908 y([28])21 b(C.)k(P)o(apadimitriou,)j(M.)d(Y)l(annak)m(akis.)h (\\Optimization,)i(appro)o(ximation,)g(and)d(complexit)o(y)168 1965 y(classes".)15 b Fk(JCSS,)g(43,)i(1991,)g(425{440.)75 2053 y Fp([29])k(A.)15 b(P)o(az,)g(S.)g(Moran.)f(\\Nondeterministic)j (p)q(olynomial)g(optimization)f(problems)g(and)f(their)h(ap-)168 2110 y(pro)o(ximations",)f Fk(The)n(or)n(etic)n(al)g(Computer)i(Scienc) n(e,)e(15)h(\(1981\))h(251{277)p Fp(.)75 2199 y([30])k(R.)e(Raz.)g(\\A) g(parallel)i(rep)q(etition)f(theorem".)e Fk(Pr)n(o)n(c.)h(of)h(27th)g (A)o(nnual)f(A)o(CM)f(Symp)n(osium)i(on)168 2255 y(the)d(The)n(ory)f (of)g(Computing)p Fp(,)f(447{456,)e(1995.)75 2344 y([31])21 b(R.)c(Raz,)f(S.)g(Safra.)f(\\A)h(sub-constan)o(t)g(error-probabilit)o (y)h(lo)o(w-degree)f(test,)g(and)g(sub-constan)o(t)168 2400 y(error-probabilit)o(y)e(PCP)e(c)o(haracterization)h(of)f(NP".)g Fk(Pr)n(o)n(c.)h(of)h(29th)g(A)o(nnual)f(A)o(CM)g(Symp)n(osium)168 2457 y(on)j(The)n(ory)h(of)f(Computing)p Fp(,)f(475{484,)e(1997.)952 2581 y(22)p eop %%Page: 23 23 23 22 bop 75 311 a Fp([32])21 b(A.)15 b(Shamir.)h(\\IP=PSP)l(A)o(CE".)e Fk(Journal)j(of)f(the)h(A)o(CM,)e(39:869{877,)j(1992)p Fp(.)75 405 y([33])j(P)l(.)13 b(Sla)o(vik.)f(\\A)h(tigh)o(t)f(analysis) h(of)f(the)g(greedy)g(algorithm)h(for)f(set)g(co)o(v)o(er".)f Fk(Pr)n(o)n(c.)i(of)h(28th)g(A)o(nnual)168 462 y(A)o(CM)i(Symp)n(osium) g(on)g(The)n(ory)g(of)g(Computing)p Fp(,)f(435{439,)e(1996.)75 555 y([34])21 b(A.)15 b(Sriniv)m(asan.)h(\\Impro)o(v)o(ed)e(appro)o (ximations)h(of)f(pac)o(king)h(and)g(co)o(v)o(ering)g(problems".)g Fk(Pr)n(o)n(c.)g(of)168 612 y(27th)i(A)o(nnual)f(A)o(CM)f(Symp)n(osium) h(on)g(the)h(The)n(ory)f(of)g(Computing)p Fp(,)f(268{276,)e(1995.)952 2581 y(23)p eop %%Trailer end userdict /end-hook known{end-hook}if %%EOF