New src/cpu/sparc/vm/cppInterpreter_sparc.cpp (original) (raw)
1 /*
2 * Copyright (c) 2007, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 /
24
25 #include "precompiled.hpp"
26 #include "asm/assembler.hpp"
27 #include "interpreter/bytecodeHistogram.hpp"
28 #include "interpreter/cppInterpreter.hpp"
29 #include "interpreter/interpreter.hpp"
30 #include "interpreter/interpreterGenerator.hpp"
31 #include "interpreter/interpreterRuntime.hpp"
32 #include "interpreter/interp_masm.hpp"
33 #include "oops/arrayOop.hpp"
34 #include "oops/methodData.hpp"
35 #include "oops/method.hpp"
36 #include "oops/oop.inline.hpp"
37 #include "prims/jvmtiExport.hpp"
38 #include "prims/jvmtiThreadState.hpp"
39 #include "runtime/arguments.hpp"
40 #include "runtime/deoptimization.hpp"
41 #include "runtime/frame.inline.hpp"
42 #include "runtime/interfaceSupport.hpp"
43 #include "runtime/sharedRuntime.hpp"
44 #include "runtime/stubRoutines.hpp"
45 #include "runtime/synchronizer.hpp"
46 #include "runtime/timer.hpp"
47 #include "runtime/vframeArray.hpp"
48 #include "utilities/debug.hpp"
49 #include "utilities/macros.hpp"
50 #ifdef SHARK
51 #include "shark/shark_globals.hpp"
52 #endif
53
54 #ifdef CC_INTERP
55
56 // Routine exists to make tracebacks look decent in debugger
57 // while "shadow" interpreter frames are on stack. It is also
58 // used to distinguish interpreter frames.
59
60 extern "C" void RecursiveInterpreterActivation(interpreterState istate) {
61 ShouldNotReachHere();
62 }
63
64 bool CppInterpreter::contains(address pc) {
65 return ( _code->contains(pc) ||
66 ( pc == (CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset)));
67 }
68
69 #define STATE(field_name) Lstate, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
70 #define __ _masm->
71
72 Label frame_manager_entry; // c++ interpreter entry point this holds that entry point label.
73
74 static address unctrap_frame_manager_entry = NULL;
75
76 static address interpreter_return_address = NULL;
77 static address deopt_frame_manager_return_atos = NULL;
78 static address deopt_frame_manager_return_btos = NULL;
79 static address deopt_frame_manager_return_itos = NULL;
80 static address deopt_frame_manager_return_ltos = NULL;
81 static address deopt_frame_manager_return_ftos = NULL;
82 static address deopt_frame_manager_return_dtos = NULL;
83 static address deopt_frame_manager_return_vtos = NULL;
84
85 const Register prevState = G1_scratch;
86
87 void InterpreterGenerator::save_native_result(void) {
88 // result potentially in O0/O1: save it across calls
89 __ stf(FloatRegisterImpl::D, F0, STATE(_native_fresult));
90 #ifdef _LP64
91 __ stx(O0, STATE(_native_lresult));
92 #else
93 __ std(O0, STATE(_native_lresult));
94 #endif
95 }
96
97 void InterpreterGenerator::restore_native_result(void) {
98
99 // Restore any method result value
100 __ ldf(FloatRegisterImpl::D, STATE(_native_fresult), F0);
101 #ifdef _LP64
102 __ ldx(STATE(_native_lresult), O0);
103 #else
104 __ ldd(STATE(_native_lresult), O0);
105 #endif
106 }
107
108 // A result handler converts/unboxes a native call result into
109 // a java interpreter/compiler result. The current frame is an
110 // interpreter frame. The activation frame unwind code must be
111 // consistent with that of TemplateTable::_return(...). In the
112 // case of native methods, the caller's SP was not modified.
113 address CppInterpreterGenerator::generate_result_handler_for(BasicType type) {
114 address entry = __ pc();
115 Register Itos_i = Otos_i ->after_save();
116 Register Itos_l = Otos_l ->after_save();
117 Register Itos_l1 = Otos_l1->after_save();
118 Register Itos_l2 = Otos_l2->after_save();
119 switch (type) {
120 case T_BOOLEAN: __ subcc(G0, O0, G0); __ addc(G0, 0, Itos_i); break; // !0 => true; 0 => false
121 case T_CHAR : __ sll(O0, 16, O0); __ srl(O0, 16, Itos_i); break; // cannot use and3, 0xFFFF too big as immediate value!
122 case T_BYTE : __ sll(O0, 24, O0); __ sra(O0, 24, Itos_i); break;
123 case T_SHORT : __ sll(O0, 16, O0); __ sra(O0, 16, Itos_i); break;
124 case T_LONG :
125 #ifndef _LP64
126 __ mov(O1, Itos_l2); // move other half of long
127 #endif // ifdef or no ifdef, fall through to the T_INT case
128 case T_INT : __ mov(O0, Itos_i); break;
129 case T_VOID : / nothing to do / break;
130 case T_FLOAT : assert(F0 == Ftos_f, "fix this code" ); break;
131 case T_DOUBLE : assert(F0 == Ftos_d, "fix this code" ); break;
132 case T_OBJECT :
133 __ ld_ptr(STATE(oop_temp), Itos_i);
134 __ verify_oop(Itos_i);
135 break;
136 default : ShouldNotReachHere();
137 }
138 __ ret(); // return from interpreter activation
139 __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
140 NOT_PRODUCT(_ emit_int32(0);) // marker for disassembly
141 return entry;
142 }
143
144 // tosca based result to c++ interpreter stack based result.
145 // Result goes to address in L1_scratch
146
147 address CppInterpreterGenerator::generate_tosca_to_stack_converter(BasicType type) {
148 // A result is in the native abi result register from a native method call.
149 // We need to return this result to the interpreter by pushing the result on the interpreter's
150 // stack. This is relatively simple the destination is in L1_scratch
151 // i.e. L1_scratch is the first free element on the stack. If we "push" a return value we must
152 // adjust L1_scratch
153 address entry = __ pc();
154 switch (type) {
155 case T_BOOLEAN:
156 // !0 => true; 0 => false
157 __ subcc(G0, O0, G0);
158 __ addc(G0, 0, O0);
159 __ st(O0, L1_scratch, 0);
160 __ sub(L1_scratch, wordSize, L1_scratch);
161 break;
162
163 // cannot use and3, 0xFFFF too big as immediate value!
164 case T_CHAR :
165 __ sll(O0, 16, O0);
166 __ srl(O0, 16, O0);
167 __ st(O0, L1_scratch, 0);
168 __ sub(L1_scratch, wordSize, L1_scratch);
169 break;
170
171 case T_BYTE :
172 __ sll(O0, 24, O0);
173 __ sra(O0, 24, O0);
174 __ st(O0, L1_scratch, 0);
175 __ sub(L1_scratch, wordSize, L1_scratch);
176 break;
177
178 case T_SHORT :
179 __ sll(O0, 16, O0);
180 __ sra(O0, 16, O0);
181 __ st(O0, L1_scratch, 0);
182 __ sub(L1_scratch, wordSize, L1_scratch);
183 break;
184 case T_LONG :
185 #ifndef _LP64
186 #if defined(COMPILER2)
187 // All return values are where we want them, except for Longs. C2 returns
188 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
189 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
190 // build even if we are returning from interpreted we just do a little
191 // stupid shuffing.
192 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
193 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
194 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
195 __ stx(G1, L1_scratch, -wordSize);
196 #else
197 // native result is in O0, O1
198 __ st(O1, L1_scratch, 0); // Low order
199 __ st(O0, L1_scratch, -wordSize); // High order
200 #endif / COMPILER2 /
201 #else
202 __ stx(O0, L1_scratch, -wordSize);
203 #endif
204 __ sub(L1_scratch, 2wordSize, L1_scratch);
205 break;
206
207 case T_INT :
208 __ st(O0, L1_scratch, 0);
209 __ sub(L1_scratch, wordSize, L1_scratch);
210 break;
211
212 case T_VOID : /* nothing to do /
213 break;
214
215 case T_FLOAT :
216 __ stf(FloatRegisterImpl::S, F0, L1_scratch, 0);
217 __ sub(L1_scratch, wordSize, L1_scratch);
218 break;
219
220 case T_DOUBLE :
221 // Every stack slot is aligned on 64 bit, However is this
222 // the correct stack slot on 64bit?? QQQ
223 __ stf(FloatRegisterImpl::D, F0, L1_scratch, -wordSize);
224 __ sub(L1_scratch, 2wordSize, L1_scratch);
225 break;
226 case T_OBJECT :
227 __ verify_oop(O0);
228 __ st_ptr(O0, L1_scratch, 0);
229 __ sub(L1_scratch, wordSize, L1_scratch);
230 break;
231 default : ShouldNotReachHere();
232 }
233 __ retl(); // return from interpreter activation
234 __ delayed()->nop(); // schedule this better
235 NOT_PRODUCT(__ emit_int32(0);) // marker for disassembly
236 return entry;
237 }
238
239 address CppInterpreterGenerator::generate_stack_to_stack_converter(BasicType type) {
240 // A result is in the java expression stack of the interpreted method that has just
241 // returned. Place this result on the java expression stack of the caller.
242 //
243 // The current interpreter activation in Lstate is for the method just returning its
244 // result. So we know that the result of this method is on the top of the current
245 // execution stack (which is pre-pushed) and will be return to the top of the caller
246 // stack. The top of the callers stack is the bottom of the locals of the current
247 // activation.
248 // Because of the way activation are managed by the frame manager the value of esp is
249 // below both the stack top of the current activation and naturally the stack top
250 // of the calling activation. This enable this routine to leave the return address
251 // to the frame manager on the stack and do a vanilla return.
252 //
253 // On entry: O0 - points to source (callee stack top)
254 // O1 - points to destination (caller stack top [i.e. free location])
255 // destroys O2, O3
256 //
257
258 address entry = __ pc();
259 switch (type) {
260 case T_VOID: break;
261 break;
262 case T_FLOAT :
263 case T_BOOLEAN:
264 case T_CHAR :
265 case T_BYTE :
266 case T_SHORT :
267 case T_INT :
268 // 1 word result
269 __ ld(O0, 0, O2);
270 __ st(O2, O1, 0);
271 __ sub(O1, wordSize, O1);
272 break;
273 case T_DOUBLE :
274 case T_LONG :
275 // return top two words on current expression stack to caller's expression stack
276 // The caller's expression stack is adjacent to the current frame manager's intepretState
277 // except we allocated one extra word for this intepretState so we won't overwrite it
278 // when we return a two word result.
279 #ifdef _LP64
280 __ ld_ptr(O0, 0, O2);
281 __ st_ptr(O2, O1, -wordSize);
282 #else
283 __ ld(O0, 0, O2);
284 __ ld(O0, wordSize, O3);
285 __ st(O3, O1, 0);
286 __ st(O2, O1, -wordSize);
287 #endif
288 __ sub(O1, 2wordSize, O1);
289 break;
290 case T_OBJECT :
291 __ ld_ptr(O0, 0, O2);
292 __ verify_oop(O2); // verify it
293 __ st_ptr(O2, O1, 0);
294 __ sub(O1, wordSize, O1);
295 break;
296 default : ShouldNotReachHere();
297 }
298 __ retl();
299 __ delayed()->nop(); // QQ schedule this better
300 return entry;
301 }
302
303 address CppInterpreterGenerator::generate_stack_to_native_abi_converter(BasicType type) {
304 // A result is in the java expression stack of the interpreted method that has just
305 // returned. Place this result in the native abi that the caller expects.
306 // We are in a new frame registers we set must be in caller (i.e. callstub) frame.
307 //
308 // Similar to generate_stack_to_stack_converter above. Called at a similar time from the
309 // frame manager execept in this situation the caller is native code (c1/c2/call_stub)
310 // and so rather than return result onto caller's java expression stack we return the
311 // result in the expected location based on the native abi.
312 // On entry: O0 - source (stack top)
313 // On exit result in expected output register
314 // QQQ schedule this better
315
316 address entry = __ pc();
317 switch (type) {
318 case T_VOID: break;
319 break;
320 case T_FLOAT :
321 __ ldf(FloatRegisterImpl::S, O0, 0, F0);
322 break;
323 case T_BOOLEAN:
324 case T_CHAR :
325 case T_BYTE :
326 case T_SHORT :
327 case T_INT :
328 // 1 word result
329 __ ld(O0, 0, O0->after_save());
330 break;
331 case T_DOUBLE :
332 __ ldf(FloatRegisterImpl::D, O0, 0, F0);
333 break;
334 case T_LONG :
335 // return top two words on current expression stack to caller's expression stack
336 // The caller's expression stack is adjacent to the current frame manager's interpretState
337 // except we allocated one extra word for this intepretState so we won't overwrite it
338 // when we return a two word result.
339 #ifdef _LP64
340 __ ld_ptr(O0, 0, O0->after_save());
341 #else
342 __ ld(O0, wordSize, O1->after_save());
343 __ ld(O0, 0, O0->after_save());
344 #endif
345 #if defined(COMPILER2) && !defined(_LP64)
346 // C2 expects long results in G1 we can't tell if we're returning to interpreted
347 // or compiled so just be safe use G1 and O0/O1
348
349 // Shift bits into high (msb) of G1
350 __ sllx(Otos_l1->after_save(), 32, G1);
351 // Zero extend low bits
352 __ srl (Otos_l2->after_save(), 0, Otos_l2->after_save());
353 __ or3 (Otos_l2->after_save(), G1, G1);
354 #endif / COMPILER2 /
355 break;
356 case T_OBJECT :
357 __ ld_ptr(O0, 0, O0->after_save());
358 __ verify_oop(O0->after_save()); // verify it
359 break;
360 default : ShouldNotReachHere();
361 }
362 __ retl();
363 __ delayed()->nop();
364 return entry;
365 }
366
367 address CppInterpreter::return_entry(TosState state, int length, Bytecodes::Code code) {
368 // make it look good in the debugger
369 return CAST_FROM_FN_PTR(address, RecursiveInterpreterActivation) + frame::pc_return_offset;
370 }
371
372 address CppInterpreter::deopt_entry(TosState state, int length) {
373 address ret = NULL;
374 if (length != 0) {
375 switch (state) {
376 case atos: ret = deopt_frame_manager_return_atos; break;
377 case btos: ret = deopt_frame_manager_return_btos; break;
378 case ctos:
379 case stos:
380 case itos: ret = deopt_frame_manager_return_itos; break;
381 case ltos: ret = deopt_frame_manager_return_ltos; break;
382 case ftos: ret = deopt_frame_manager_return_ftos; break;
383 case dtos: ret = deopt_frame_manager_return_dtos; break;
384 case vtos: ret = deopt_frame_manager_return_vtos; break;
385 }
386 } else {
387 ret = unctrap_frame_manager_entry; // re-execute the bytecode ( e.g. uncommon trap)
388 }
389 assert(ret != NULL, "Not initialized");
390 return ret;
391 }
392
393 //
394 // Helpers for commoning out cases in the various type of method entries.
395 //
396
397 // increment invocation count & check for overflow
398 //
399 // Note: checking for negative value instead of overflow
400 // so we have a 'sticky' overflow test
401 //
402 // Lmethod: method
403 // ??: invocation counter
404 //
405 void InterpreterGenerator::generate_counter_incr(Label overflow, Label* profile_method, Label* profile_method_continue) {
406 Label done;
407 const Register Rcounters = G3_scratch;
408
409 __ ld_ptr(STATE(_method), G5_method);
410 __ get_method_counters(G5_method, Rcounters, done);
411
412 // Update standard invocation counters
413 __ increment_invocation_counter(Rcounters, O0, G4_scratch);
414 if (ProfileInterpreter) {
415 Address interpreter_invocation_counter(Rcounters,
416 in_bytes(MethodCounters::interpreter_invocation_counter_offset()));
417 __ ld(interpreter_invocation_counter, G4_scratch);
418 __ inc(G4_scratch);
419 __ st(G4_scratch, interpreter_invocation_counter);
420 }
421
422 AddressLiteral invocation_limit((address)&InvocationCounter::InterpreterInvocationLimit);
423 __ load_contents(invocation_limit, G3_scratch);
424 __ cmp(O0, G3_scratch);
425 __ br(Assembler::greaterEqualUnsigned, false, Assembler::pn, overflow);
426 __ delayed()->nop();
427 __ bind(done);
428 }
429
430 address InterpreterGenerator::generate_empty_entry(void) {
431
432 // A method that does nothing but return...
433
434 address entry = __ pc();
435 Label slow_path;
436
437 // do nothing for empty methods (do not even increment invocation counter)
438 if ( UseFastEmptyMethods) {
439 // If we need a safepoint check, generate full interpreter entry.
440 AddressLiteral sync_state(SafepointSynchronize::address_of_state());
441 __ load_contents(sync_state, G3_scratch);
442 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
443 __ br(Assembler::notEqual, false, Assembler::pn, frame_manager_entry);
444 __ delayed()->nop();
445
446 // Code: _return
447 __ retl();
448 __ delayed()->mov(O5_savedSP, SP);
449 return entry;
450 }
451 return NULL;
452 }
453
454 address InterpreterGenerator::generate_Reference_get_entry(void) {
455 #if INCLUDE_ALL_GCS
456 if (UseG1GC) {
457 // We need to generate have a routine that generates code to:
458 // * load the value in the referent field
459 // * passes that value to the pre-barrier.
460 //
461 // In the case of G1 this will record the value of the
462 // referent in an SATB buffer if marking is active.
463 // This will cause concurrent marking to mark the referent
464 // field as live.
465 Unimplemented();
466 }
467 #endif // INCLUDE_ALL_GCS
468
469 // If G1 is not enabled then attempt to go through the accessor entry point
470 // Reference.get is an accessor
471 return generate_jump_to_normal_entry();
472 }
473
474 //
475 // Interpreter stub for calling a native method. (C++ interpreter)
476 // This sets up a somewhat different looking stack for calling the native method
477 // than the typical interpreter frame setup.
478 //
479
480 address InterpreterGenerator::generate_native_entry(bool synchronized) {
481 address entry = __ pc();
482
483 // the following temporary registers are used during frame creation
484 const Register Gtmp1 = G3_scratch ;
485 const Register Gtmp2 = G1_scratch;
486 const Register RconstMethod = Gtmp1;
487 const Address constMethod(G5_method, in_bytes(Method::const_offset()));
488 const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset()));
489
490 bool inc_counter = UseCompiler || CountCompiledCalls;
491
492 // make sure registers are different!
493 assert_different_registers(G2_thread, G5_method, Gargs, Gtmp1, Gtmp2);
494
495 const Address access_flags (G5_method, in_bytes(Method::access_flags_offset()));
496
497 Label Lentry;
498 __ bind(Lentry);
499
500 const Register Glocals_size = G3;
501 assert_different_registers(Glocals_size, G4_scratch, Gframe_size);
502
503 // make sure method is native & not abstract
504 // rethink these assertions - they can be simplified and shared (gri 2/25/2000)
505 #ifdef ASSERT
506 __ ld(access_flags, Gtmp1);
507 {
508 Label L;
509 __ btst(JVM_ACC_NATIVE, Gtmp1);
510 __ br(Assembler::notZero, false, Assembler::pt, L);
511 __ delayed()->nop();
512 __ stop("tried to execute non-native method as native");
513 __ bind(L);
514 }
515 { Label L;
516 __ btst(JVM_ACC_ABSTRACT, Gtmp1);
517 __ br(Assembler::zero, false, Assembler::pt, L);
518 __ delayed()->nop();
519 __ stop("tried to execute abstract method as non-abstract");
520 __ bind(L);
521 }
522 #endif // ASSERT
523
524 __ ld_ptr(constMethod, RconstMethod);
525 __ lduh(size_of_parameters, Gtmp1);
526 __ sll(Gtmp1, LogBytesPerWord, Gtmp2); // parameter size in bytes
527 __ add(Gargs, Gtmp2, Gargs); // points to first local + BytesPerWord
528 // NEW
529 __ add(Gargs, -wordSize, Gargs); // points to first local[0]
530 // generate the code to allocate the interpreter stack frame
531 // NEW FRAME ALLOCATED HERE
532 // save callers original sp
533 // __ mov(SP, I5_savedSP->after_restore());
534
535 generate_compute_interpreter_state(Lstate, G0, true);
536
537 // At this point Lstate points to new interpreter state
538 //
539
540 const Address do_not_unlock_if_synchronized(G2_thread,
541 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
542 // Since at this point in the method invocation the exception handler
543 // would try to exit the monitor of synchronized methods which hasn't
544 // been entered yet, we set the thread local variable
545 // _do_not_unlock_if_synchronized to true. If any exception was thrown by
546 // runtime, exception handling i.e. unlock_if_synchronized_method will
547 // check this thread local flag.
548 // This flag has two effects, one is to force an unwind in the topmost
549 // interpreter frame and not perform an unlock while doing so.
550
551 __ movbool(true, G3_scratch);
552 __ stbool(G3_scratch, do_not_unlock_if_synchronized);
553
554
555 // increment invocation counter and check for overflow
556 //
557 // Note: checking for negative value instead of overflow
558 // so we have a 'sticky' overflow test (may be of
559 // importance as soon as we have true MT/MP)
560 Label invocation_counter_overflow;
561 if (inc_counter) {
562 generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
563 }
564 Label Lcontinue;
565 __ bind(Lcontinue);
566
567 bang_stack_shadow_pages(true);
568 // reset the _do_not_unlock_if_synchronized flag
569 __ stbool(G0, do_not_unlock_if_synchronized);
570
571 // check for synchronized methods
572 // Must happen AFTER invocation_counter check, so method is not locked
573 // if counter overflows.
574
575 if (synchronized) {
576 lock_method();
577 // Don't see how G2_thread is preserved here...
578 // __ verify_thread(); QQQ destroys L0,L1 can't use
579 } else {
580 #ifdef ASSERT
581 { Label ok;
582 __ ld_ptr(STATE(_method), G5_method);
583 __ ld(access_flags, O0);
584 __ btst(JVM_ACC_SYNCHRONIZED, O0);
585 __ br( Assembler::zero, false, Assembler::pt, ok);
586 __ delayed()->nop();
587 __ stop("method needs synchronization");
588 __ bind(ok);
589 }
590 #endif // ASSERT
591 }
592
593 // start execution
594
595 // __ verify_thread(); kills L1,L2 can't use at the moment
596
597 // jvmti/jvmpi support
598 __ notify_method_entry();
599
600 // native call
601
602 // (note that O0 is never an oop--at most it is a handle)
603 // It is important not to smash any handles created by this call,
604 // until any oop handle in O0 is dereferenced.
605
606 // (note that the space for outgoing params is preallocated)
607
608 // get signature handler
609
610 Label pending_exception_present;
611
612 { Label L;
613 __ ld_ptr(STATE(_method), G5_method);
614 __ ld_ptr(Address(G5_method, in_bytes(Method::signature_handler_offset())), G3_scratch);
615 __ tst(G3_scratch);
616 __ brx(Assembler::notZero, false, Assembler::pt, L);
617 __ delayed()->nop();
618 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), G5_method, false);
619 __ ld_ptr(STATE(_method), G5_method);
620
621 Address exception_addr(G2_thread, in_bytes(Thread::pending_exception_offset()));
622 __ ld_ptr(exception_addr, G3_scratch);
623 __ br_notnull_short(G3_scratch, Assembler::pn, pending_exception_present);
624 __ ld_ptr(Address(G5_method, in_bytes(Method::signature_handler_offset())), G3_scratch);
625 __ bind(L);
626 }
627
628 // Push a new frame so that the args will really be stored in
629 // Copy a few locals across so the new frame has the variables
630 // we need but these values will be dead at the jni call and
631 // therefore not gc volatile like the values in the current
632 // frame (Lstate in particular)
633
634 // Flush the state pointer to the register save area
635 // Which is the only register we need for a stack walk.
636 __ st_ptr(Lstate, SP, (Lstate->sp_offset_in_saved_window() * wordSize) + STACK_BIAS);
637
638 __ mov(Lstate, O1); // Need to pass the state pointer across the frame
639
640 // Calculate current frame size
641 __ sub(SP, FP, O3); // Calculate negative of current frame size
642 __ save(SP, O3, SP); // Allocate an identical sized frame
643
644 __ mov(I1, Lstate); // In the "natural" register.
645
646 // Note I7 has leftover trash. Slow signature handler will fill it in
647 // should we get there. Normal jni call will set reasonable last_Java_pc
648 // below (and fix I7 so the stack trace doesn't have a meaningless frame
649 // in it).
650
651
652 // call signature handler
653 __ ld_ptr(STATE(_method), Lmethod);
654 __ ld_ptr(STATE(_locals), Llocals);
655
656 __ callr(G3_scratch, 0);
657 __ delayed()->nop();
658 __ ld_ptr(STATE(_thread), G2_thread); // restore thread (shouldn't be needed)
659
660 { Label not_static;
661
662 __ ld_ptr(STATE(_method), G5_method);
663 __ ld(access_flags, O0);
664 __ btst(JVM_ACC_STATIC, O0);
665 __ br( Assembler::zero, false, Assembler::pt, not_static);
666 __ delayed()->
667 // get native function entry point(O0 is a good temp until the very end)
668 ld_ptr(Address(G5_method, in_bytes(Method::native_function_offset())), O0);
669 // for static methods insert the mirror argument
670 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
671
672 __ ld_ptr(Address(G5_method, in_bytes(Method:: const_offset())), O1);
673 __ ld_ptr(Address(O1, in_bytes(ConstMethod::constants_offset())), O1);
674 __ ld_ptr(Address(O1, ConstantPool::pool_holder_offset_in_bytes()), O1);
675 __ ld_ptr(O1, mirror_offset, O1);
676 // where the mirror handle body is allocated:
677 #ifdef ASSERT
678 if (!PrintSignatureHandlers) // do not dirty the output with this
679 { Label L;
680 __ tst(O1);
681 __ brx(Assembler::notZero, false, Assembler::pt, L);
682 __ delayed()->nop();
683 __ stop("mirror is missing");
684 __ bind(L);
685 }
686 #endif // ASSERT
687 __ st_ptr(O1, STATE(_oop_temp));
688 __ add(STATE(_oop_temp), O1); // this is really an LEA not an add
689 __ bind(not_static);
690 }
691
692 // At this point, arguments have been copied off of stack into
693 // their JNI positions, which are O1..O5 and SP[68..].
694 // Oops are boxed in-place on the stack, with handles copied to arguments.
695 // The result handler is in Lscratch. O0 will shortly hold the JNIEnv.
696
697 #ifdef ASSERT
698 { Label L;
699 __ tst(O0);
700 __ brx(Assembler::notZero, false, Assembler::pt, L);
701 __ delayed()->nop();
702 __ stop("native entry point is missing");
703 __ bind(L);
704 }
705 #endif // ASSERT
706
707 //
708 // setup the java frame anchor
709 //
710 // The scavenge function only needs to know that the PC of this frame is
711 // in the interpreter method entry code, it doesn't need to know the exact
712 // PC and hence we can use O7 which points to the return address from the
713 // previous call in the code stream (signature handler function)
714 //
715 // The other trick is we set last_Java_sp to FP instead of the usual SP because
716 // we have pushed the extra frame in order to protect the volatile register(s)
717 // in that frame when we return from the jni call
718 //
719
720
721 __ set_last_Java_frame(FP, O7);
722 __ mov(O7, I7); // make dummy interpreter frame look like one above,
723 // not meaningless information that'll confuse me.
724
725 // flush the windows now. We don't care about the current (protection) frame
726 // only the outer frames
727
728 __ flushw();
729
730 // mark windows as flushed
731 Address flags(G2_thread,
732 in_bytes(JavaThread::frame_anchor_offset()) + in_bytes(JavaFrameAnchor::flags_offset()));
733 __ set(JavaFrameAnchor::flushed, G3_scratch);
734 __ st(G3_scratch, flags);
735
736 // Transition from _thread_in_Java to _thread_in_native. We are already safepoint ready.
737
738 Address thread_state(G2_thread, in_bytes(JavaThread::thread_state_offset()));
739 #ifdef ASSERT
740 { Label L;
741 __ ld(thread_state, G3_scratch);
742 __ cmp(G3_scratch, _thread_in_Java);
743 __ br(Assembler::equal, false, Assembler::pt, L);
744 __ delayed()->nop();
745 __ stop("Wrong thread state in native stub");
746 __ bind(L);
747 }
748 #endif // ASSERT
749 __ set(_thread_in_native, G3_scratch);
750 __ st(G3_scratch, thread_state);
751
752 // Call the jni method, using the delay slot to set the JNIEnv* argument.
753 __ callr(O0, 0);
754 __ delayed()->
755 add(G2_thread, in_bytes(JavaThread::jni_environment_offset()), O0);
756 __ ld_ptr(STATE(_thread), G2_thread); // restore thread
757
758 // must we block?
759
760 // Block, if necessary, before resuming in _thread_in_Java state.
761 // In order for GC to work, don't clear the last_Java_sp until after blocking.
762 { Label no_block;
763 AddressLiteral sync_state(SafepointSynchronize::address_of_state());
764
765 // Switch thread to "native transition" state before reading the synchronization state.
766 // This additional state is necessary because reading and testing the synchronization
767 // state is not atomic w.r.t. GC, as this scenario demonstrates:
768 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
769 // VM thread changes sync state to synchronizing and suspends threads for GC.
770 // Thread A is resumed to finish this native method, but doesn't block here since it
771 // didn't see any synchronization is progress, and escapes.
772 __ set(_thread_in_native_trans, G3_scratch);
773 __ st(G3_scratch, thread_state);
774 if(os::is_MP()) {
775 // Write serialization page so VM thread can do a pseudo remote membar.
776 // We use the current thread pointer to calculate a thread specific
777 // offset to write to within the page. This minimizes bus traffic
778 // due to cache line collision.
779 __ serialize_memory(G2_thread, G1_scratch, G3_scratch);
780 }
781 __ load_contents(sync_state, G3_scratch);
782 __ cmp(G3_scratch, SafepointSynchronize::_not_synchronized);
783
784
785 Label L;
786 Address suspend_state(G2_thread, in_bytes(JavaThread::suspend_flags_offset()));
787 __ br(Assembler::notEqual, false, Assembler::pn, L);
788 __ delayed()->
789 ld(suspend_state, G3_scratch);
790 __ cmp(G3_scratch, 0);
791 __ br(Assembler::equal, false, Assembler::pt, no_block);
792 __ delayed()->nop();
793 __ bind(L);
794
795 // Block. Save any potential method result value before the operation and
796 // use a leaf call to leave the last_Java_frame setup undisturbed.
797 save_native_result();
798 __ call_VM_leaf(noreg,
799 CAST_FROM_FN_PTR(address, JavaThread::check_safepoint_and_suspend_for_native_trans),
800 G2_thread);
801 __ ld_ptr(STATE(_thread), G2_thread); // restore thread
802 // Restore any method result value
803 restore_native_result();
804 __ bind(no_block);
805 }
806
807 // Clear the frame anchor now
808
809 __ reset_last_Java_frame();
810
811 // Move the result handler address
812 __ mov(Lscratch, G3_scratch);
813 // return possible result to the outer frame
814 #ifndef __LP64
815 __ mov(O0, I0);
816 __ restore(O1, G0, O1);
817 #else
818 __ restore(O0, G0, O0);
819 #endif /* __LP64 /
820
821 // Move result handler to expected register
822 __ mov(G3_scratch, Lscratch);
823
824
825 // thread state is thread_in_native_trans. Any safepoint blocking has
826 // happened in the trampoline we are ready to switch to thread_in_Java.
827
828 __ set(_thread_in_Java, G3_scratch);
829 __ st(G3_scratch, thread_state);
830
831 // If we have an oop result store it where it will be safe for any further gc
832 // until we return now that we've released the handle it might be protected by
833
834 {
835 Label no_oop, store_result;
836
837 __ set((intptr_t)AbstractInterpreter::result_handler(T_OBJECT), G3_scratch);
838 __ cmp(G3_scratch, Lscratch);
839 __ brx(Assembler::notEqual, false, Assembler::pt, no_oop);
840 __ delayed()->nop();
841 __ addcc(G0, O0, O0);
842 __ brx(Assembler::notZero, true, Assembler::pt, store_result); // if result is not NULL:
843 __ delayed()->ld_ptr(O0, 0, O0); // unbox it
844 __ mov(G0, O0);
845
846 __ bind(store_result);
847 // Store it where gc will look for it and result handler expects it.
848 __ st_ptr(O0, STATE(_oop_temp));
849
850 __ bind(no_oop);
851
852 }
853
854 // reset handle block
855 __ ld_ptr(G2_thread, in_bytes(JavaThread::active_handles_offset()), G3_scratch);
856 __ st(G0, G3_scratch, JNIHandleBlock::top_offset_in_bytes());
857
858
859 // handle exceptions (exception handling will handle unlocking!)
860 { Label L;
861 Address exception_addr (G2_thread, in_bytes(Thread::pending_exception_offset()));
862
863 __ ld_ptr(exception_addr, Gtemp);
864 __ tst(Gtemp);
865 __ brx(Assembler::equal, false, Assembler::pt, L);
866 __ delayed()->nop();
867 __ bind(pending_exception_present);
868 // With c++ interpreter we just leave it pending caller will do the correct thing. However...
869 // Like x86 we ignore the result of the native call and leave the method locked. This
870 // seems wrong to leave things locked.
871
872 __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
873 __ delayed()->restore(I5_savedSP, G0, SP); // remove interpreter frame
874
875 __ bind(L);
876 }
877
878 // jvmdi/jvmpi support (preserves thread register)
879 __ notify_method_exit(true, ilgl, InterpreterMacroAssembler::NotifyJVMTI);
880
881 if (synchronized) {
882 // save and restore any potential method result value around the unlocking operation
883 save_native_result();
884
885 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
886 // Get the initial monitor we allocated
887 __ sub(Lstate, entry_size, O1); // initial monitor
888 __ unlock_object(O1);
889 restore_native_result();
890 }
891
892 #if defined(COMPILER2) && !defined(_LP64)
893
894 // C2 expects long results in G1 we can't tell if we're returning to interpreted
895 // or compiled so just be safe.
896
897 __ sllx(O0, 32, G1); // Shift bits into high G1
898 __ srl (O1, 0, O1); // Zero extend O1
899 __ or3 (O1, G1, G1); // OR 64 bits into G1
900
901 #endif / COMPILER2 && !_LP64 /
902
903 #ifdef ASSERT
904 {
905 Label ok;
906 __ cmp(I5_savedSP, FP);
907 __ brx(Assembler::greaterEqualUnsigned, false, Assembler::pt, ok);
908 __ delayed()->nop();
909 __ stop("bad I5_savedSP value");
910 __ should_not_reach_here();
911 __ bind(ok);
912 }
913 #endif
914 // Calls result handler which POPS FRAME
915 if (TraceJumps) {
916 // Move target to register that is recordable
917 __ mov(Lscratch, G3_scratch);
918 __ JMP(G3_scratch, 0);
919 } else {
920 __ jmp(Lscratch, 0);
921 }
922 __ delayed()->nop();
923
924 if (inc_counter) {
925 // handle invocation counter overflow
926 __ bind(invocation_counter_overflow);
927 generate_counter_overflow(Lcontinue);
928 }
929
930
931 return entry;
932 }
933
934 void CppInterpreterGenerator::generate_compute_interpreter_state(const Register state,
935 const Register prev_state,
936 bool native) {
937
938 // On entry
939 // G5_method - caller's method
940 // Gargs - points to initial parameters (i.e. locals[0])
941 // G2_thread - valid? (C1 only??)
942 // "prev_state" - contains any previous frame manager state which we must save a link
943 //
944 // On return
945 // "state" is a pointer to the newly allocated state object. We must allocate and initialize
946 // a new interpretState object and the method expression stack.
947
948 assert_different_registers(state, prev_state);
949 assert_different_registers(prev_state, G3_scratch);
950 const Register Gtmp = G3_scratch;
951 const Address constMethod (G5_method, in_bytes(Method::const_offset()));
952 const Address access_flags (G5_method, in_bytes(Method::access_flags_offset()));
953
954 // slop factor is two extra slots on the expression stack so that
955 // we always have room to store a result when returning from a call without parameters
956 // that returns a result.
957
958 const int slop_factor = 2wordSize;
959
960 const int fixed_size = ((sizeof(BytecodeInterpreter) + slop_factor) >> LogBytesPerWord) + // what is the slop factor?
961 Method::extra_stack_entries() + // extra stack for jsr 292
962 frame::memory_parameter_word_sp_offset + // register save area + param window
963 (native ? frame::interpreter_frame_extra_outgoing_argument_words : 0); // JNI, class
964
965 // XXX G5_method valid
966
967 // Now compute new frame size
968
969 if (native) {
970 const Register RconstMethod = Gtmp;
971 const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset()));
972 __ ld_ptr(constMethod, RconstMethod);
973 __ lduh( size_of_parameters, Gtmp );
974 __ calc_mem_param_words(Gtmp, Gtmp); // space for native call parameters passed on the stack in words
975 } else {
976 // Full size expression stack
977 __ ld_ptr(constMethod, Gtmp);
978 __ lduh(Gtmp, in_bytes(ConstMethod::max_stack_offset()), Gtmp);
979 }
980 __ add(Gtmp, fixed_size, Gtmp); // plus the fixed portion
981
982 __ neg(Gtmp); // negative space for stack/parameters in words
983 __ and3(Gtmp, -WordsPerLong, Gtmp); // make multiple of 2 (SP must be 2-word aligned)
984 __ sll(Gtmp, LogBytesPerWord, Gtmp); // negative space for frame in bytes
985
986 // Need to do stack size check here before we fault on large frames
987
988 Label stack_ok;
989
990 const int max_pages = StackShadowPages > (StackRedPages+StackYellowPages) ? StackShadowPages :
991 (StackRedPages+StackYellowPages);
992
993
994 __ ld_ptr(G2_thread, in_bytes(Thread::stack_base_offset()), O0);
995 __ ld_ptr(G2_thread, in_bytes(Thread::stack_size_offset()), O1);
996 // compute stack bottom
997 __ sub(O0, O1, O0);
998
999 // Avoid touching the guard pages
1000 // Also a fudge for frame size of BytecodeInterpreter::run
1001 // It varies from 1k->4k depending on build type
1002 const int fudge = 6 * K;
1003
1004 __ set(fudge + (max_pages * os::vm_page_size()), O1);
1005
1006 __ add(O0, O1, O0);
1007 __ sub(O0, Gtmp, O0);
1008 __ cmp(SP, O0);
1009 __ brx(Assembler::greaterUnsigned, false, Assembler::pt, stack_ok);
1010 __ delayed()->nop();
1011
1012 // throw exception return address becomes throwing pc
1013
1014 __ call_VM(Oexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
1015 __ stop("never reached");
1016
1017 __ bind(stack_ok);
1018
1019 __ save(SP, Gtmp, SP); // setup new frame and register window
1020
1021 // New window I7 call_stub or previous activation
1022 // O6 - register save area, BytecodeInterpreter just below it, args/locals just above that
1023 //
1024 __ sub(FP, sizeof(BytecodeInterpreter), state); // Point to new Interpreter state
1025 __ add(state, STACK_BIAS, state ); // Account for 64bit bias
1026
1027 #define XXX_STATE(field_name) state, in_bytes(byte_offset_of(BytecodeInterpreter, field_name))
1028
1029 // Initialize a new Interpreter state
1030 // orig_sp - caller's original sp
1031 // G2_thread - thread
1032 // Gargs - &locals[0] (unbiased?)
1033 // G5_method - method
1034 // SP (biased) - accounts for full size java stack, BytecodeInterpreter object, register save area, and register parameter save window
1035
1036
1037 __ set(0xdead0004, O1);
1038
1039
1040 __ st_ptr(Gargs, XXX_STATE(_locals));
1041 __ st_ptr(G0, XXX_STATE(_oop_temp));
1042
1043 __ st_ptr(state, XXX_STATE(_self_link)); // point to self
1044 __ st_ptr(prev_state->after_save(), XXX_STATE(_prev_link)); // Chain interpreter states
1045 __ st_ptr(G2_thread, XXX_STATE(_thread)); // Store javathread
1046
1047 if (native) {
1048 __ st_ptr(G0, XXX_STATE(_bcp));
1049 } else {
1050 __ ld_ptr(G5_method, in_bytes(Method::const_offset()), O2); // get ConstMethod*
1051 __ add(O2, in_bytes(ConstMethod::codes_offset()), O2); // get bcp
1052 __ st_ptr(O2, XXX_STATE(_bcp));
1053 }
1054
1055 __ st_ptr(G0, XXX_STATE(_mdx));
1056 __ st_ptr(G5_method, XXX_STATE(_method));
1057
1058 __ set((int) BytecodeInterpreter::method_entry, O1);
1059 __ st(O1, XXX_STATE(_msg));
1060
1061 __ ld_ptr(constMethod, O3);
1062 __ ld_ptr(O3, in_bytes(ConstMethod::constants_offset()), O3);
1063 __ ld_ptr(O3, ConstantPool::cache_offset_in_bytes(), O2);
1064 __ st_ptr(O2, XXX_STATE(_constants));
1065
1066 __ st_ptr(G0, XXX_STATE(_result._to_call._callee));
1067
1068 // Monitor base is just start of BytecodeInterpreter object;
1069 __ mov(state, O2);
1070 __ st_ptr(O2, XXX_STATE(_monitor_base));
1071
1072 // Do we need a monitor for synchonized method?
1073 {
1074 __ ld(access_flags, O1);
1075 Label done;
1076 Label got_obj;
1077 __ btst(JVM_ACC_SYNCHRONIZED, O1);
1078 __ br( Assembler::zero, false, Assembler::pt, done);
1079
1080 const int mirror_offset = in_bytes(Klass::java_mirror_offset());
1081 __ delayed()->btst(JVM_ACC_STATIC, O1);
1082 __ ld_ptr(XXX_STATE(_locals), O1);
1083 __ br( Assembler::zero, true, Assembler::pt, got_obj);
1084 __ delayed()->ld_ptr(O1, 0, O1); // get receiver for not-static case
1085 __ ld_ptr(constMethod, O1);
1086 __ ld_ptr( O1, in_bytes(ConstMethod::constants_offset()), O1);
1087 __ ld_ptr( O1, ConstantPool::pool_holder_offset_in_bytes(), O1);
1088 // lock the mirror, not the Klass*
1089 __ ld_ptr( O1, mirror_offset, O1);
1090
1091 __ bind(got_obj);
1092
1093 #ifdef ASSERT
1094 __ tst(O1);
1095 __ breakpoint_trap(Assembler::zero, Assembler::ptr_cc);
1096 #endif // ASSERT
1097
1098 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1099 __ sub(SP, entry_size, SP); // account for initial monitor
1100 __ sub(O2, entry_size, O2); // initial monitor
1101 __ st_ptr(O1, O2, BasicObjectLock::obj_offset_in_bytes()); // and allocate it for interpreter use
1102 __ bind(done);
1103 }
1104
1105 // Remember initial frame bottom
1106
1107 __ st_ptr(SP, XXX_STATE(_frame_bottom));
1108
1109 __ st_ptr(O2, XXX_STATE(_stack_base));
1110
1111 __ sub(O2, wordSize, O2); // prepush
1112 __ st_ptr(O2, XXX_STATE(_stack)); // PREPUSH
1113
1114 // Full size expression stack
1115 __ ld_ptr(constMethod, O3);
1116 __ lduh(O3, in_bytes(ConstMethod::max_stack_offset()), O3);
1117 __ inc(O3, Method::extra_stack_entries());
1118 __ sll(O3, LogBytesPerWord, O3);
1119 __ sub(O2, O3, O3);
1120 // __ sub(O3, wordSize, O3); // so prepush doesn't look out of bounds
1121 __ st_ptr(O3, XXX_STATE(_stack_limit));
1122
1123 if (!native) {
1124 //
1125 // Code to initialize locals
1126 //
1127 Register init_value = noreg; // will be G0 if we must clear locals
1128 // Now zero locals
1129 if (true /* zerolocals / || ClearInterpreterLocals) {
1130 // explicitly initialize locals
1131 init_value = G0;
1132 } else {
1133 #ifdef ASSERT
1134 // initialize locals to a garbage pattern for better debugging
1135 init_value = O3;
1136 __ set( 0x0F0F0F0F, init_value );
1137 #endif // ASSERT
1138 }
1139 if (init_value != noreg) {
1140 Label clear_loop;
1141 const Register RconstMethod = O1;
1142 const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset()));
1143 const Address size_of_locals (RconstMethod, in_bytes(ConstMethod::size_of_locals_offset()));
1144
1145 // NOTE: If you change the frame layout, this code will need to
1146 // be updated!
1147 __ ld_ptr( constMethod, RconstMethod );
1148 __ lduh( size_of_locals, O2 );
1149 __ lduh( size_of_parameters, O1 );
1150 __ sll( O2, LogBytesPerWord, O2);
1151 __ sll( O1, LogBytesPerWord, O1 );
1152 __ ld_ptr(XXX_STATE(_locals), L2_scratch);
1153 __ sub( L2_scratch, O2, O2 );
1154 __ sub( L2_scratch, O1, O1 );
1155
1156 __ bind( clear_loop );
1157 __ inc( O2, wordSize );
1158
1159 __ cmp( O2, O1 );
1160 __ br( Assembler::lessEqualUnsigned, true, Assembler::pt, clear_loop );
1161 __ delayed()->st_ptr( init_value, O2, 0 );
1162 }
1163 }
1164 }
1165 // Find preallocated monitor and lock method (C++ interpreter)
1166 //
1167 void InterpreterGenerator::lock_method() {
1168 // Lock the current method.
1169 // Destroys registers L2_scratch, L3_scratch, O0
1170 //
1171 // Find everything relative to Lstate
1172
1173 #ifdef ASSERT
1174 __ ld_ptr(STATE(_method), L2_scratch);
1175 __ ld(L2_scratch, in_bytes(Method::access_flags_offset()), O0);
1176
1177 { Label ok;
1178 __ btst(JVM_ACC_SYNCHRONIZED, O0);
1179 __ br( Assembler::notZero, false, Assembler::pt, ok);
1180 __ delayed()->nop();
1181 __ stop("method doesn't need synchronization");
1182 __ bind(ok);
1183 }
1184 #endif // ASSERT
1185
1186 // monitor is already allocated at stack base
1187 // and the lockee is already present
1188 __ ld_ptr(STATE(_stack_base), L2_scratch);
1189 __ ld_ptr(L2_scratch, BasicObjectLock::obj_offset_in_bytes(), O0); // get object
1190 __ lock_object(L2_scratch, O0);
1191
1192 }
1193
1194 // Generate code for handling resuming a deopted method
1195 void CppInterpreterGenerator::generate_deopt_handling() {
1196
1197 Label return_from_deopt_common;
1198
1199 // deopt needs to jump to here to enter the interpreter (return a result)
1200 deopt_frame_manager_return_atos = __ pc();
1201
1202 // O0/O1 live
1203 __ ba(return_from_deopt_common);
1204 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_OBJECT), L3_scratch); // Result stub address array index
1205
1206
1207 // deopt needs to jump to here to enter the interpreter (return a result)
1208 deopt_frame_manager_return_btos = __ pc();
1209
1210 // O0/O1 live
1211 __ ba(return_from_deopt_common);
1212 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_BOOLEAN), L3_scratch); // Result stub address array index
1213
1214 // deopt needs to jump to here to enter the interpreter (return a result)
1215 deopt_frame_manager_return_itos = __ pc();
1216
1217 // O0/O1 live
1218 __ ba(return_from_deopt_common);
1219 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_INT), L3_scratch); // Result stub address array index
1220
1221 // deopt needs to jump to here to enter the interpreter (return a result)
1222
1223 deopt_frame_manager_return_ltos = __ pc();
1224 #if !defined(_LP64) && defined(COMPILER2)
1225 // All return values are where we want them, except for Longs. C2 returns
1226 // longs in G1 in the 32-bit build whereas the interpreter wants them in O0/O1.
1227 // Since the interpreter will return longs in G1 and O0/O1 in the 32bit
1228 // build even if we are returning from interpreted we just do a little
1229 // stupid shuffing.
1230 // Note: I tried to make c2 return longs in O0/O1 and G1 so we wouldn't have to
1231 // do this here. Unfortunately if we did a rethrow we'd see an machepilog node
1232 // first which would move g1 -> O0/O1 and destroy the exception we were throwing.
1233
1234 __ srl (G1, 0,O1);
1235 __ srlx(G1,32,O0);
1236 #endif / !_LP64 && COMPILER2 /
1237 // O0/O1 live
1238 __ ba(return_from_deopt_common);
1239 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_LONG), L3_scratch); // Result stub address array index
1240
1241 // deopt needs to jump to here to enter the interpreter (return a result)
1242
1243 deopt_frame_manager_return_ftos = __ pc();
1244 // O0/O1 live
1245 __ ba(return_from_deopt_common);
1246 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_FLOAT), L3_scratch); // Result stub address array index
1247
1248 // deopt needs to jump to here to enter the interpreter (return a result)
1249 deopt_frame_manager_return_dtos = __ pc();
1250
1251 // O0/O1 live
1252 __ ba(return_from_deopt_common);
1253 __ delayed()->set(AbstractInterpreter::BasicType_as_index(T_DOUBLE), L3_scratch); // Result stub address array index
1254
1255 // deopt needs to jump to here to enter the interpreter (return a result)
1256 deopt_frame_manager_return_vtos = __ pc();
1257
1258 // O0/O1 live
1259 __ set(AbstractInterpreter::BasicType_as_index(T_VOID), L3_scratch);
1260
1261 // Deopt return common
1262 // an index is present that lets us move any possible result being
1263 // return to the interpreter's stack
1264 //
1265 __ bind(return_from_deopt_common);
1266
1267 // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1268 // stack is in the state that the calling convention left it.
1269 // Copy the result from native abi result and place it on java expression stack.
1270
1271 // Current interpreter state is present in Lstate
1272
1273 // Get current pre-pushed top of interpreter stack
1274 // Any result (if any) is in native abi
1275 // result type index is in L3_scratch
1276
1277 __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
1278
1279 __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1280 __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1281 __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
1282 __ jmpl(Lscratch, G0, O7); // and convert it
1283 __ delayed()->nop();
1284
1285 // L1_scratch points to top of stack (prepushed)
1286 __ st_ptr(L1_scratch, STATE(_stack));
1287 }
1288
1289 // Generate the code to handle a more_monitors message from the c++ interpreter
1290 void CppInterpreterGenerator::generate_more_monitors() {
1291
1292 Label entry, loop;
1293 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
1294 // 1. compute new pointers // esp: old expression stack top
1295 __ delayed()->ld_ptr(STATE(_stack_base), L4_scratch); // current expression stack bottom
1296 __ sub(L4_scratch, entry_size, L4_scratch);
1297 __ st_ptr(L4_scratch, STATE(_stack_base));
1298
1299 __ sub(SP, entry_size, SP); // Grow stack
1300 __ st_ptr(SP, STATE(_frame_bottom));
1301
1302 __ ld_ptr(STATE(_stack_limit), L2_scratch);
1303 __ sub(L2_scratch, entry_size, L2_scratch);
1304 __ st_ptr(L2_scratch, STATE(_stack_limit));
1305
1306 __ ld_ptr(STATE(_stack), L1_scratch); // Get current stack top
1307 __ sub(L1_scratch, entry_size, L1_scratch);
1308 __ st_ptr(L1_scratch, STATE(_stack));
1309 __ ba(entry);
1310 __ delayed()->add(L1_scratch, wordSize, L1_scratch); // first real entry (undo prepush)
1311
1312 // 2. move expression stack
1313
1314 __ bind(loop);
1315 __ st_ptr(L3_scratch, Address(L1_scratch, 0));
1316 __ add(L1_scratch, wordSize, L1_scratch);
1317 __ bind(entry);
1318 __ cmp(L1_scratch, L4_scratch);
1319 __ br(Assembler::notEqual, false, Assembler::pt, loop);
1320 __ delayed()->ld_ptr(L1_scratch, entry_size, L3_scratch);
1321
1322 // now zero the slot so we can find it.
1323 __ st_ptr(G0, L4_scratch, BasicObjectLock::obj_offset_in_bytes());
1324
1325 }
1326
1327 // Initial entry to C++ interpreter from the call_stub.
1328 // This entry point is called the frame manager since it handles the generation
1329 // of interpreter activation frames via requests directly from the vm (via call_stub)
1330 // and via requests from the interpreter. The requests from the call_stub happen
1331 // directly thru the entry point. Requests from the interpreter happen via returning
1332 // from the interpreter and examining the message the interpreter has returned to
1333 // the frame manager. The frame manager can take the following requests:
1334
1335 // NO_REQUEST - error, should never happen.
1336 // MORE_MONITORS - need a new monitor. Shuffle the expression stack on down and
1337 // allocate a new monitor.
1338 // CALL_METHOD - setup a new activation to call a new method. Very similar to what
1339 // happens during entry during the entry via the call stub.
1340 // RETURN_FROM_METHOD - remove an activation. Return to interpreter or call stub.
1341 //
1342 // Arguments:
1343 //
1344 // ebx: Method
1345 // ecx: receiver - unused (retrieved from stack as needed)
1346 // esi: previous frame manager state (NULL from the call_stub/c1/c2)
1347 //
1348 //
1349 // Stack layout at entry
1350 //
1351 // [ return address ] <--- esp
1352 // [ parameter n ]
1353 // ...
1354 // [ parameter 1 ]
1355 // [ expression stack ]
1356 //
1357 //
1358 // We are free to blow any registers we like because the call_stub which brought us here
1359 // initially has preserved the callee save registers already.
1360 //
1361 //
1362
1363 static address interpreter_frame_manager = NULL;
1364
1365 #ifdef ASSERT
1366 #define VALIDATE_STATE(scratch, marker)
1367 {
1368 Label skip;
1369 __ ld_ptr(STATE(_self_link), scratch);
1370 __ cmp(Lstate, scratch);
1371 __ brx(Assembler::equal, false, Assembler::pt, skip);
1372 __ delayed()->nop();
1373 __ breakpoint_trap();
1374 __ emit_int32(marker);
1375 __ bind(skip);
1376 }
1377 #else
1378 #define VALIDATE_STATE(scratch, marker)
1379 #endif /* ASSERT /
1380
1381 void CppInterpreterGenerator::adjust_callers_stack(Register args) {
1382 //
1383 // Adjust caller's stack so that all the locals can be contiguous with
1384 // the parameters.
1385 // Worries about stack overflow make this a pain.
1386 //
1387 // Destroys args, G3_scratch, G3_scratch
1388 // In/Out O5_savedSP (sender's original SP)
1389 //
1390 // assert_different_registers(state, prev_state);
1391 const Register Gtmp = G3_scratch;
1392 const Register RconstMethod = G3_scratch;
1393 const Register tmp = O2;
1394 const Address constMethod(G5_method, in_bytes(Method::const_offset()));
1395 const Address size_of_parameters(RconstMethod, in_bytes(ConstMethod::size_of_parameters_offset()));
1396 const Address size_of_locals (RconstMethod, in_bytes(ConstMethod::size_of_locals_offset()));
1397
1398 __ ld_ptr(constMethod, RconstMethod);
1399 __ lduh(size_of_parameters, tmp);
1400 __ sll(tmp, LogBytesPerWord, Gargs); // parameter size in bytes
1401 __ add(args, Gargs, Gargs); // points to first local + BytesPerWord
1402 // NEW
1403 __ add(Gargs, -wordSize, Gargs); // points to first local[0]
1404 // determine extra space for non-argument locals & adjust caller's SP
1405 // Gtmp1: parameter size in words
1406 __ lduh(size_of_locals, Gtmp);
1407 __ compute_extra_locals_size_in_bytes(tmp, Gtmp, Gtmp);
1408
1409 #if 1
1410 // c2i adapters place the final interpreter argument in the register save area for O0/I0
1411 // the call_stub will place the final interpreter argument at
1412 // frame::memory_parameter_word_sp_offset. This is mostly not noticable for either asm
1413 // or c++ interpreter. However with the c++ interpreter when we do a recursive call
1414 // and try to make it look good in the debugger we will store the argument to
1415 // RecursiveInterpreterActivation in the register argument save area. Without allocating
1416 // extra space for the compiler this will overwrite locals in the local array of the
1417 // interpreter.
1418 // QQQ still needed with frameless adapters???
1419
1420 const int c2i_adjust_words = frame::memory_parameter_word_sp_offset - frame::callee_register_argument_save_area_sp_offset;
1421
1422 __ add(Gtmp, c2i_adjust_wordswordSize, Gtmp);
1423 #endif // 1
1424
1425
1426 __ sub(SP, Gtmp, SP); // just caller's frame for the additional space we need.
1427 }
1428
1429 address InterpreterGenerator::generate_normal_entry(bool synchronized) {
1430
1431 // G5_method: Method*
1432 // G2_thread: thread (unused)
1433 // Gargs: bottom of args (sender_sp)
1434 // O5: sender's sp
1435
1436 // A single frame manager is plenty as we don't specialize for synchronized. We could and
1437 // the code is pretty much ready. Would need to change the test below and for good measure
1438 // modify generate_interpreter_state to only do the (pre) sync stuff stuff for synchronized
1439 // routines. Not clear this is worth it yet.
1440
1441 if (interpreter_frame_manager) {
1442 return interpreter_frame_manager;
1443 }
1444
1445 __ bind(frame_manager_entry);
1446
1447 // the following temporary registers are used during frame creation
1448 const Register Gtmp1 = G3_scratch;
1449 // const Register Lmirror = L1; // native mirror (native calls only)
1450
1451 const Address constMethod (G5_method, in_bytes(Method::const_offset()));
1452 const Address access_flags (G5_method, in_bytes(Method::access_flags_offset()));
1453
1454 address entry_point = __ pc();
1455 __ mov(G0, prevState); // no current activation
1456
1457
1458 Label re_dispatch;
1459
1460 __ bind(re_dispatch);
1461
1462 // Interpreter needs to have locals completely contiguous. In order to do that
1463 // We must adjust the caller's stack pointer for any locals beyond just the
1464 // parameters
1465 adjust_callers_stack(Gargs);
1466
1467 // O5_savedSP still contains sender's sp
1468
1469 // NEW FRAME
1470
1471 generate_compute_interpreter_state(Lstate, prevState, false);
1472
1473 // At this point a new interpreter frame and state object are created and initialized
1474 // Lstate has the pointer to the new activation
1475 // Any stack banging or limit check should already be done.
1476
1477 Label call_interpreter;
1478
1479 __ bind(call_interpreter);
1480
1481
1482 #if 1
1483 __ set(0xdead002, Lmirror);
1484 __ set(0xdead002, L2_scratch);
1485 __ set(0xdead003, L3_scratch);
1486 __ set(0xdead004, L4_scratch);
1487 __ set(0xdead005, Lscratch);
1488 __ set(0xdead006, Lscratch2);
1489 __ set(0xdead007, L7_scratch);
1490
1491 __ set(0xdeaf002, O2);
1492 __ set(0xdeaf003, O3);
1493 __ set(0xdeaf004, O4);
1494 __ set(0xdeaf005, O5);
1495 #endif
1496
1497 // Call interpreter (stack bang complete) enter here if message is
1498 // set and we know stack size is valid
1499
1500 Label call_interpreter_2;
1501
1502 __ bind(call_interpreter_2);
1503
1504 #ifdef ASSERT
1505 {
1506 Label skip;
1507 __ ld_ptr(STATE(_frame_bottom), G3_scratch);
1508 __ cmp(G3_scratch, SP);
1509 __ brx(Assembler::equal, false, Assembler::pt, skip);
1510 __ delayed()->nop();
1511 __ stop("SP not restored to frame bottom");
1512 __ bind(skip);
1513 }
1514 #endif
1515
1516 VALIDATE_STATE(G3_scratch, 4);
1517 __ set_last_Java_frame(SP, noreg);
1518 __ mov(Lstate, O0); // (arg) pointer to current state
1519
1520 __ call(CAST_FROM_FN_PTR(address,
1521 JvmtiExport::can_post_interpreter_events() ?
1522 BytecodeInterpreter::runWithChecks
1523 : BytecodeInterpreter::run),
1524 relocInfo::runtime_call_type);
1525
1526 __ delayed()->nop();
1527
1528 __ ld_ptr(STATE(_thread), G2_thread);
1529 __ reset_last_Java_frame();
1530
1531 // examine msg from interpreter to determine next action
1532 __ ld_ptr(STATE(_thread), G2_thread); // restore G2_thread
1533
1534 __ ld(STATE(_msg), L1_scratch); // Get new message
1535
1536 Label call_method;
1537 Label return_from_interpreted_method;
1538 Label throw_exception;
1539 Label do_OSR;
1540 Label bad_msg;
1541 Label resume_interpreter;
1542
1543 __ cmp(L1_scratch, (int)BytecodeInterpreter::call_method);
1544 __ br(Assembler::equal, false, Assembler::pt, call_method);
1545 __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::return_from_method);
1546 __ br(Assembler::equal, false, Assembler::pt, return_from_interpreted_method);
1547 __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::throwing_exception);
1548 __ br(Assembler::equal, false, Assembler::pt, throw_exception);
1549 __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::do_osr);
1550 __ br(Assembler::equal, false, Assembler::pt, do_OSR);
1551 __ delayed()->cmp(L1_scratch, (int)BytecodeInterpreter::more_monitors);
1552 __ br(Assembler::notEqual, false, Assembler::pt, bad_msg);
1553
1554 // Allocate more monitor space, shuffle expression stack....
1555
1556 generate_more_monitors();
1557
1558 // new monitor slot allocated, resume the interpreter.
1559
1560 __ set((int)BytecodeInterpreter::got_monitors, L1_scratch);
1561 VALIDATE_STATE(G3_scratch, 5);
1562 __ ba(call_interpreter);
1563 __ delayed()->st(L1_scratch, STATE(_msg));
1564
1565 // uncommon trap needs to jump to here to enter the interpreter (re-execute current bytecode)
1566 unctrap_frame_manager_entry = __ pc();
1567
1568 // QQQ what message do we send
1569
1570 __ ba(call_interpreter);
1571 __ delayed()->ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1572
1573 //=============================================================================
1574 // Returning from a compiled method into a deopted method. The bytecode at the
1575 // bcp has completed. The result of the bytecode is in the native abi (the tosca
1576 // for the template based interpreter). Any stack space that was used by the
1577 // bytecode that has completed has been removed (e.g. parameters for an invoke)
1578 // so all that we have to do is place any pending result on the expression stack
1579 // and resume execution on the next bytecode.
1580
1581 generate_deopt_handling();
1582
1583 // ready to resume the interpreter
1584
1585 __ set((int)BytecodeInterpreter::deopt_resume, L1_scratch);
1586 __ ba(call_interpreter);
1587 __ delayed()->st(L1_scratch, STATE(_msg));
1588
1589 // Current frame has caught an exception we need to dispatch to the
1590 // handler. We can get here because a native interpreter frame caught
1591 // an exception in which case there is no handler and we must rethrow
1592 // If it is a vanilla interpreted frame the we simply drop into the
1593 // interpreter and let it do the lookup.
1594
1595 Interpreter::_rethrow_exception_entry = __ pc();
1596
1597 Label return_with_exception;
1598 Label unwind_and_forward;
1599
1600 // O0: exception
1601 // O7: throwing pc
1602
1603 // We want exception in the thread no matter what we ultimately decide about frame type.
1604
1605 Address exception_addr (G2_thread, in_bytes(Thread::pending_exception_offset()));
1606 __ verify_thread();
1607 __ st_ptr(O0, exception_addr);
1608
1609 // get the Method*
1610 __ ld_ptr(STATE(_method), G5_method);
1611
1612 // if this current frame vanilla or native?
1613
1614 __ ld(access_flags, Gtmp1);
1615 __ btst(JVM_ACC_NATIVE, Gtmp1);
1616 __ br(Assembler::zero, false, Assembler::pt, return_with_exception); // vanilla interpreted frame handle directly
1617 __ delayed()->nop();
1618
1619 // We drop thru to unwind a native interpreted frame with a pending exception
1620 // We jump here for the initial interpreter frame with exception pending
1621 // We unwind the current acivation and forward it to our caller.
1622
1623 __ bind(unwind_and_forward);
1624
1625 // Unwind frame and jump to forward exception. unwinding will place throwing pc in O7
1626 // as expected by forward_exception.
1627
1628 __ restore(FP, G0, SP); // unwind interpreter state frame
1629 __ br(Assembler::always, false, Assembler::pt, StubRoutines::forward_exception_entry(), relocInfo::runtime_call_type);
1630 __ delayed()->mov(I5_savedSP->after_restore(), SP);
1631
1632 // Return point from a call which returns a result in the native abi
1633 // (c1/c2/jni-native). This result must be processed onto the java
1634 // expression stack.
1635 //
1636 // A pending exception may be present in which case there is no result present
1637
1638 address return_from_native_method = __ pc();
1639
1640 VALIDATE_STATE(G3_scratch, 6);
1641
1642 // Result if any is in native abi result (O0..O1/F0..F1). The java expression
1643 // stack is in the state that the calling convention left it.
1644 // Copy the result from native abi result and place it on java expression stack.
1645
1646 // Current interpreter state is present in Lstate
1647
1648 // Exception pending?
1649
1650 __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1651 __ ld_ptr(exception_addr, Lscratch); // get any pending exception
1652 __ tst(Lscratch); // exception pending?
1653 __ brx(Assembler::notZero, false, Assembler::pt, return_with_exception);
1654 __ delayed()->nop();
1655
1656 // Process the native abi result to java expression stack
1657
1658 __ ld_ptr(STATE(_result._to_call._callee), L4_scratch); // called method
1659 __ ld_ptr(STATE(_stack), L1_scratch); // get top of java expr stack
1660 // get parameter size
1661 __ ld_ptr(L4_scratch, in_bytes(Method::const_offset()), L2_scratch);
1662 __ lduh(L2_scratch, in_bytes(ConstMethod::size_of_parameters_offset()), L2_scratch);
1663 __ sll(L2_scratch, LogBytesPerWord, L2_scratch ); // parameter size in bytes
1664 __ add(L1_scratch, L2_scratch, L1_scratch); // stack destination for result
1665 __ ld(L4_scratch, in_bytes(Method::result_index_offset()), L3_scratch); // called method result type index
1666
1667 // tosca is really just native abi
1668 __ set((intptr_t)CppInterpreter::_tosca_to_stack, L4_scratch);
1669 __ sll(L3_scratch, LogBytesPerWord, L3_scratch);
1670 __ ld_ptr(L4_scratch, L3_scratch, Lscratch); // get typed result converter address
1671 __ jmpl(Lscratch, G0, O7); // and convert it
1672 __ delayed()->nop();
1673
1674 // L1_scratch points to top of stack (prepushed)
1675
1676 __ ba(resume_interpreter);
1677 __ delayed()->mov(L1_scratch, O1);
1678
1679 // An exception is being caught on return to a vanilla interpreter frame.
1680 // Empty the stack and resume interpreter
1681
1682 __ bind(return_with_exception);
1683
1684 __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1685 __ ld_ptr(STATE(_stack_base), O1); // empty java expression stack
1686 __ ba(resume_interpreter);
1687 __ delayed()->sub(O1, wordSize, O1); // account for prepush
1688
1689 // Return from interpreted method we return result appropriate to the caller (i.e. "recursive"
1690 // interpreter call, or native) and unwind this interpreter activation.
1691 // All monitors should be unlocked.
1692
1693 __ bind(return_from_interpreted_method);
1694
1695 VALIDATE_STATE(G3_scratch, 7);
1696
1697 Label return_to_initial_caller;
1698
1699 // Interpreted result is on the top of the completed activation expression stack.
1700 // We must return it to the top of the callers stack if caller was interpreted
1701 // otherwise we convert to native abi result and return to call_stub/c1/c2
1702 // The caller's expression stack was truncated by the call however the current activation
1703 // has enough stuff on the stack that we have usable space there no matter what. The
1704 // other thing that makes it easy is that the top of the caller's stack is stored in STATE(_locals)
1705 // for the current activation
1706
1707 __ ld_ptr(STATE(_prev_link), L1_scratch);
1708 __ ld_ptr(STATE(_method), L2_scratch); // get method just executed
1709 __ ld(L2_scratch, in_bytes(Method::result_index_offset()), L2_scratch);
1710 __ tst(L1_scratch);
1711 __ brx(Assembler::zero, false, Assembler::pt, return_to_initial_caller);
1712 __ delayed()->sll(L2_scratch, LogBytesPerWord, L2_scratch);
1713
1714 // Copy result to callers java stack
1715
1716 __ set((intptr_t)CppInterpreter::_stack_to_stack, L4_scratch);
1717 __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
1718 __ ld_ptr(STATE(_stack), O0); // current top (prepushed)
1719 __ ld_ptr(STATE(_locals), O1); // stack destination
1720
1721 // O0 - will be source, O1 - will be destination (preserved)
1722 __ jmpl(Lscratch, G0, O7); // and convert it
1723 __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
1724
1725 // O1 == &locals[0]
1726
1727 // Result is now on caller's stack. Just unwind current activation and resume
1728
1729 Label unwind_recursive_activation;
1730
1731
1732 __ bind(unwind_recursive_activation);
1733
1734 // O1 == &locals[0] (really callers stacktop) for activation now returning
1735 // returning to interpreter method from "recursive" interpreter call
1736 // result converter left O1 pointing to top of the( prepushed) java stack for method we are returning
1737 // to. Now all we must do is unwind the state from the completed call
1738
1739 // Must restore stack
1740 VALIDATE_STATE(G3_scratch, 8);
1741
1742 // Return to interpreter method after a method call (interpreted/native/c1/c2) has completed.
1743 // Result if any is already on the caller's stack. All we must do now is remove the now dead
1744 // frame and tell interpreter to resume.
1745
1746
1747 __ mov(O1, I1); // pass back new stack top across activation
1748 // POP FRAME HERE ==================================
1749 __ restore(FP, G0, SP); // unwind interpreter state frame
1750 __ ld_ptr(STATE(_frame_bottom), SP); // restore to full stack frame
1751
1752
1753 // Resume the interpreter. The current frame contains the current interpreter
1754 // state object.
1755 //
1756 // O1 == new java stack pointer
1757
1758 __ bind(resume_interpreter);
1759 VALIDATE_STATE(G3_scratch, 10);
1760
1761 // A frame we have already used before so no need to bang stack so use call_interpreter_2 entry
1762
1763 __ set((int)BytecodeInterpreter::method_resume, L1_scratch);
1764 __ st(L1_scratch, STATE(_msg));
1765 __ ba(call_interpreter_2);
1766 __ delayed()->st_ptr(O1, STATE(_stack));
1767
1768 // interpreter returning to native code (call_stub/c1/c2)
1769 // convert result and unwind initial activation
1770 // L2_scratch - scaled result type index
1771
1772 __ bind(return_to_initial_caller);
1773
1774 __ set((intptr_t)CppInterpreter::_stack_to_native_abi, L4_scratch);
1775 __ ld_ptr(L4_scratch, L2_scratch, Lscratch); // get typed result converter address
1776 __ ld_ptr(STATE(_stack), O0); // current top (prepushed)
1777 __ jmpl(Lscratch, G0, O7); // and convert it
1778 __ delayed()->add(O0, wordSize, O0); // get source (top of current expr stack)
1779
1780 Label unwind_initial_activation;
1781 __ bind(unwind_initial_activation);
1782
1783 // RETURN TO CALL_STUB/C1/C2 code (result if any in I0..I1/(F0/..F1)
1784 // we can return here with an exception that wasn't handled by interpreted code
1785 // how does c1/c2 see it on return?
1786
1787 // compute resulting sp before/after args popped depending upon calling convention
1788 // __ ld_ptr(STATE(_saved_sp), Gtmp1);
1789 //
1790 // POP FRAME HERE ==================================
1791 __ restore(FP, G0, SP);
1792 __ retl();
1793 __ delayed()->mov(I5_savedSP->after_restore(), SP);
1794
1795 // OSR request, unwind the current frame and transfer to the OSR entry
1796 // and enter OSR nmethod
1797
1798 __ bind(do_OSR);
1799 Label remove_initial_frame;
1800 __ ld_ptr(STATE(_prev_link), L1_scratch);
1801 __ ld_ptr(STATE(_result._osr._osr_buf), G1_scratch);
1802
1803 // We are going to pop this frame. Is there another interpreter frame underneath
1804 // it or is it callstub/compiled?
1805
1806 __ tst(L1_scratch);
1807 __ brx(Assembler::zero, false, Assembler::pt, remove_initial_frame);
1808 __ delayed()->ld_ptr(STATE(_result._osr._osr_entry), G3_scratch);
1809
1810 // Frame underneath is an interpreter frame simply unwind
1811 // POP FRAME HERE ==================================
1812 __ restore(FP, G0, SP); // unwind interpreter state frame
1813 __ mov(I5_savedSP->after_restore(), SP);
1814
1815 // Since we are now calling native need to change our "return address" from the
1816 // dummy RecursiveInterpreterActivation to a return from native
1817
1818 __ set((intptr_t)return_from_native_method - 8, O7);
1819
1820 __ jmpl(G3_scratch, G0, G0);
1821 __ delayed()->mov(G1_scratch, O0);
1822
1823 __ bind(remove_initial_frame);
1824
1825 // POP FRAME HERE ==================================
1826 __ restore(FP, G0, SP);
1827 __ mov(I5_savedSP->after_restore(), SP);
1828 __ jmpl(G3_scratch, G0, G0);
1829 __ delayed()->mov(G1_scratch, O0);
1830
1831 // Call a new method. All we do is (temporarily) trim the expression stack
1832 // push a return address to bring us back to here and leap to the new entry.
1833 // At this point we have a topmost frame that was allocated by the frame manager
1834 // which contains the current method interpreted state. We trim this frame
1835 // of excess java expression stack entries and then recurse.
1836
1837 __ bind(call_method);
1838
1839 // stack points to next free location and not top element on expression stack
1840 // method expects sp to be pointing to topmost element
1841
1842 __ ld_ptr(STATE(_thread), G2_thread);
1843 __ ld_ptr(STATE(_result._to_call._callee), G5_method);
1844
1845
1846 // SP already takes in to account the 2 extra words we use for slop
1847 // when we call a "static long no_params()" method. So if
1848 // we trim back sp by the amount of unused java expression stack
1849 // there will be automagically the 2 extra words we need.
1850 // We also have to worry about keeping SP aligned.
1851
1852 __ ld_ptr(STATE(_stack), Gargs);
1853 __ ld_ptr(STATE(_stack_limit), L1_scratch);
1854
1855 // compute the unused java stack size
1856 __ sub(Gargs, L1_scratch, L2_scratch); // compute unused space
1857
1858 // Round down the unused space to that stack is always 16-byte aligned
1859 // by making the unused space a multiple of the size of two longs.
1860
1861 __ and3(L2_scratch, -2BytesPerLong, L2_scratch);
1862
1863 // Now trim the stack
1864 __ add(SP, L2_scratch, SP);
1865
1866
1867 // Now point to the final argument (account for prepush)
1868 __ add(Gargs, wordSize, Gargs);
1869 #ifdef ASSERT
1870 // Make sure we have space for the window
1871 __ sub(Gargs, SP, L1_scratch);
1872 __ cmp(L1_scratch, 16wordSize);
1873 {
1874 Label skip;
1875 __ brx(Assembler::greaterEqual, false, Assembler::pt, skip);
1876 __ delayed()->nop();
1877 __ stop("killed stack");
1878 __ bind(skip);
1879 }
1880 #endif // ASSERT
1881
1882 // Create a new frame where we can store values that make it look like the interpreter
1883 // really recursed.
1884
1885 // prepare to recurse or call specialized entry
1886
1887 // First link the registers we need
1888
1889 // make the pc look good in debugger
1890 __ set(CAST_FROM_FN_PTR(intptr_t, RecursiveInterpreterActivation), O7);
1891 // argument too
1892 __ mov(Lstate, I0);
1893
1894 // Record our sending SP
1895 __ mov(SP, O5_savedSP);
1896
1897 __ ld_ptr(STATE(_result._to_call._callee_entry_point), L2_scratch);
1898 __ set((intptr_t) entry_point, L1_scratch);
1899 __ cmp(L1_scratch, L2_scratch);
1900 __ brx(Assembler::equal, false, Assembler::pt, re_dispatch);
1901 __ delayed()->mov(Lstate, prevState); // link activations
1902
1903 // method uses specialized entry, push a return so we look like call stub setup
1904 // this path will handle fact that result is returned in registers and not
1905 // on the java stack.
1906
1907 __ set((intptr_t)return_from_native_method - 8, O7);
1908 __ jmpl(L2_scratch, G0, G0); // Do specialized entry
1909 __ delayed()->nop();
1910
1911 //
1912 // Bad Message from interpreter
1913 //
1914 __ bind(bad_msg);
1915 __ stop("Bad message from interpreter");
1916
1917 // Interpreted method "returned" with an exception pass it on...
1918 // Pass result, unwind activation and continue/return to interpreter/call_stub
1919 // We handle result (if any) differently based on return to interpreter or call_stub
1920
1921 __ bind(throw_exception);
1922 __ ld_ptr(STATE(_prev_link), L1_scratch);
1923 __ tst(L1_scratch);
1924 __ brx(Assembler::zero, false, Assembler::pt, unwind_and_forward);
1925 __ delayed()->nop();
1926
1927 __ ld_ptr(STATE(_locals), O1); // get result of popping callee's args
1928 __ ba(unwind_recursive_activation);
1929 __ delayed()->nop();
1930
1931 interpreter_frame_manager = entry_point;
1932 return entry_point;
1933 }
1934
1935 InterpreterGenerator::InterpreterGenerator(StubQueue* code)
1936 : CppInterpreterGenerator(code) {
1937 generate_all(); // down here so it can be "virtual"
1938 }
1939
1940
1941 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
1942
1943 // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
1944 // expression stack, the callee will have callee_extra_locals (so we can account for
1945 // frame extension) and monitor_size for monitors. Basically we need to calculate
1946 // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
1947 //
1948 //
1949 // The big complicating thing here is that we must ensure that the stack stays properly
1950 // aligned. This would be even uglier if monitor size wasn't modulo what the stack
1951 // needs to be aligned for). We are given that the sp (fp) is already aligned by
1952 // the caller so we must ensure that it is properly aligned for our callee.
1953 //
1954 // Ths c++ interpreter always makes sure that we have a enough extra space on the
1955 // stack at all times to deal with the "stack long no_params()" method issue. This
1956 // is "slop_factor" here.
1957 const int slop_factor = 2;
1958
1959 const int fixed_size = sizeof(BytecodeInterpreter)/wordSize + // interpreter state object
1960 frame::memory_parameter_word_sp_offset; // register save area + param window
1961 return (round_to(max_stack +
1962 slop_factor +
1963 fixed_size +
1964 monitor_size +
1965 (callee_extra_locals * Interpreter::stackElementWords), WordsPerLong));
1966
1967 }
1968
1969 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
1970
1971 // See call_stub code
1972 int call_stub_size = round_to(7 + frame::memory_parameter_word_sp_offset,
1973 WordsPerLong); // 7 + register save area
1974
1975 // Save space for one monitor to get into the interpreted method in case
1976 // the method is synchronized
1977 int monitor_size = method->is_synchronized() ?
1978 1frame::interpreter_frame_monitor_size() : 0;
1979 return size_activation_helper(method->max_locals(), method->max_stack(),
1980 monitor_size) + call_stub_size;
1981 }
1982
1983 void BytecodeInterpreter::layout_interpreterState(interpreterState to_fill,
1984 frame caller,
1985 frame* current,
1986 Method* method,
1987 intptr_t* locals,
1988 intptr_t* stack,
1989 intptr_t* stack_base,
1990 intptr_t* monitor_base,
1991 intptr_t* frame_bottom,
1992 bool is_top_frame
1993 )
1994 {
1995 // What about any vtable?
1996 //
1997 to_fill->_thread = JavaThread::current();
1998 // This gets filled in later but make it something recognizable for now
1999 to_fill->_bcp = method->code_base();
2000 to_fill->_locals = locals;
2001 to_fill->_constants = method->constants()->cache();
2002 to_fill->_method = method;
2003 to_fill->_mdx = NULL;
2004 to_fill->_stack = stack;
2005 if (is_top_frame && JavaThread::current()->popframe_forcing_deopt_reexecution() ) {
2006 to_fill->_msg = deopt_resume2;
2007 } else {
2008 to_fill->_msg = method_resume;
2009 }
2010 to_fill->_result._to_call._bcp_advance = 0;
2011 to_fill->_result._to_call._callee_entry_point = NULL; // doesn't matter to anyone
2012 to_fill->_result._to_call._callee = NULL; // doesn't matter to anyone
2013 to_fill->_prev_link = NULL;
2014
2015 // Fill in the registers for the frame
2016
2017 // Need to install _sender_sp. Actually not too hard in C++!
2018 // When the skeletal frames are layed out we fill in a value
2019 // for _sender_sp. That value is only correct for the oldest
2020 // skeletal frame constructed (because there is only a single
2021 // entry for "caller_adjustment". While the skeletal frames
2022 // exist that is good enough. We correct that calculation
2023 // here and get all the frames correct.
2024
2025 // to_fill->_sender_sp = locals - (method->size_of_parameters() - 1);
2026
2027 current->register_addr(Lstate) = (intptr_t) to_fill;
2028 // skeletal already places a useful value here and this doesn't account
2029 // for alignment so don't bother.
2030 // current->register_addr(I5_savedSP) = (intptr_t) locals - (method->size_of_parameters() - 1);
2031
2032 if (caller->is_interpreted_frame()) {
2033 interpreterState prev = caller->get_interpreterState();
2034 to_fill->_prev_link = prev;
2035 // Make the prev callee look proper
2036 prev->_result._to_call._callee = method;
2037 if (prev->_bcp == Bytecodes::_invokeinterface) {
2038 prev->_result._to_call._bcp_advance = 5;
2039 } else {
2040 prev->_result._to_call._bcp_advance = 3;
2041 }
2042 }
2043 to_fill->_oop_temp = NULL;
2044 to_fill->_stack_base = stack_base;
2045 // Need +1 here because stack_base points to the word just above the first expr stack entry
2046 // and stack_limit is supposed to point to the word just below the last expr stack entry.
2047 // See generate_compute_interpreter_state.
2048 to_fill->_stack_limit = stack_base - (method->max_stack() + 1);
2049 to_fill->_monitor_base = (BasicObjectLock) monitor_base;
2050
2051 // sparc specific
2052 to_fill->_frame_bottom = frame_bottom;
2053 to_fill->_self_link = to_fill;
2054 #ifdef ASSERT
2055 to_fill->_native_fresult = 123456.789;
2056 to_fill->_native_lresult = CONST64(0xdeadcafedeafcafe);
2057 #endif
2058 }
2059
2060 void BytecodeInterpreter::pd_layout_interpreterState(interpreterState istate, address last_Java_pc, intptr_t last_Java_fp) {
2061 istate->_last_Java_pc = (intptr_t) last_Java_pc;
2062 }
2063
2064 static int frame_size_helper(int max_stack,
2065 int moncount,
2066 int callee_param_size,
2067 int callee_locals_size,
2068 bool is_top_frame,
2069 int& monitor_size,
2070 int& full_frame_words) {
2071 int extra_locals_size = callee_locals_size - callee_param_size;
2072 monitor_size = (sizeof(BasicObjectLock) * moncount) / wordSize;
2073 full_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2074 int short_frame_words = size_activation_helper(extra_locals_size, max_stack, monitor_size);
2075 int frame_words = is_top_frame ? full_frame_words : short_frame_words;
2076
2077 return frame_words;
2078 }
2079
2080 int AbstractInterpreter::size_activation(int max_stack,
2081 int tempcount,
2082 int extra_args,
2083 int moncount,
2084 int callee_param_size,
2085 int callee_locals_size,
2086 bool is_top_frame) {
2087 assert(extra_args == 0, "NEED TO FIX");
2088 // NOTE: return size is in words not bytes
2089 // Calculate the amount our frame will be adjust by the callee. For top frame
2090 // this is zero.
2091
2092 // NOTE: ia64 seems to do this wrong (or at least backwards) in that it
2093 // calculates the extra locals based on itself. Not what the callee does
2094 // to it. So it ignores last_frame_adjust value. Seems suspicious as far
2095 // as getting sender_sp correct.
2096
2097 int unused_monitor_size = 0;
2098 int unused_full_frame_words = 0;
2099 return frame_size_helper(max_stack, moncount, callee_param_size, callee_locals_size, is_top_frame,
2100 unused_monitor_size, unused_full_frame_words);
2101 }
2102 void AbstractInterpreter::layout_activation(Method* method,
2103 int tempcount, // Number of slots on java expression stack in use
2104 int popframe_extra_args,
2105 int moncount, // Number of active monitors
2106 int caller_actual_parameters,
2107 int callee_param_size,
2108 int callee_locals_size,
2109 frame* caller,
2110 frame* interpreter_frame,
2111 bool is_top_frame,
2112 bool is_bottom_frame) {
2113 assert(popframe_extra_args == 0, "NEED TO FIX");
2114 // NOTE this code must exactly mimic what InterpreterGenerator::generate_compute_interpreter_state()
2115 // does as far as allocating an interpreter frame.
2116 // Set up the method, locals, and monitors.
2117 // The frame interpreter_frame is guaranteed to be the right size,
2118 // as determined by a previous call to the size_activation() method.
2119 // It is also guaranteed to be walkable even though it is in a skeletal state
2120 // NOTE: tempcount is the current size of the java expression stack. For top most
2121 // frames we will allocate a full sized expression stack and not the curback
2122 // version that non-top frames have.
2123
2124 int monitor_size = 0;
2125 int full_frame_words = 0;
2126 int frame_words = frame_size_helper(method->max_stack(), moncount, callee_param_size, callee_locals_size,
2127 is_top_frame, monitor_size, full_frame_words);
2128
2129 /*
2130 We must now fill in all the pieces of the frame. This means both
2131 the interpreterState and the registers.
2132 /
2133
2134 // MUCHO HACK
2135
2136 intptr_t frame_bottom = interpreter_frame->sp() - (full_frame_words - frame_words);
2137 // 'interpreter_frame->sp()' is unbiased while 'frame_bottom' must be a biased value in 64bit mode.
2138 assert(((intptr_t)frame_bottom & 0xf) == 0, "SP biased in layout_activation");
2139 frame_bottom = (intptr_t*)((intptr_t)frame_bottom - STACK_BIAS);
2140
2141 /* Now fillin the interpreterState object /
2142
2143 interpreterState cur_state = (interpreterState) ((intptr_t)interpreter_frame->fp() - sizeof(BytecodeInterpreter));
2144
2145
2146 intptr_t locals;
2147
2148 // Calculate the postion of locals[0]. This is painful because of
2149 // stack alignment (same as ia64). The problem is that we can
2150 // not compute the location of locals from fp(). fp() will account
2151 // for the extra locals but it also accounts for aligning the stack
2152 // and we can't determine if the locals[0] was misaligned but max_locals
2153 // was enough to have the
2154 // calculate postion of locals. fp already accounts for extra locals.
2155 // +2 for the static long no_params() issue.
2156
2157 if (caller->is_interpreted_frame()) {
2158 // locals must agree with the caller because it will be used to set the
2159 // caller's tos when we return.
2160 interpreterState prev = caller->get_interpreterState();
2161 // stack() is prepushed.
2162 locals = prev->stack() + method->size_of_parameters();
2163 } else {
2164 // Lay out locals block in the caller adjacent to the register window save area.
2165 //
2166 // Compiled frames do not allocate a varargs area which is why this if
2167 // statement is needed.
2168 //
2169 intptr_t* fp = interpreter_frame->fp();
2170 int local_words = method->max_locals() * Interpreter::stackElementWords;
2171
2172 if (caller->is_compiled_frame()) {
2173 locals = fp + frame::register_save_words + local_words - 1;
2174 } else {
2175 locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
2176 }
2177
2178 }
2179 // END MUCHO HACK
2180
2181 intptr_t* monitor_base = (intptr_t*) cur_state;
2182 intptr_t* stack_base = monitor_base - monitor_size;
2183 /* +1 because stack is always prepushed /
2184 intptr_t stack = stack_base - (tempcount + 1);
2185
2186
2187 BytecodeInterpreter::layout_interpreterState(cur_state,
2188 caller,
2189 interpreter_frame,
2190 method,
2191 locals,
2192 stack,
2193 stack_base,
2194 monitor_base,
2195 frame_bottom,
2196 is_top_frame);
2197
2198 BytecodeInterpreter::pd_layout_interpreterState(cur_state, interpreter_return_address, interpreter_frame->fp());
2199 }
2200
2201 #endif // CC_INTERP