New src/cpu/x86/vm/templateTable_x86.cpp (original) (raw)

1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 / 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "interpreter/interpreter.hpp" 28 #include "interpreter/interpreterRuntime.hpp" 29 #include "interpreter/interp_masm.hpp" 30 #include "interpreter/templateTable.hpp" 31 #include "memory/universe.inline.hpp" 32 #include "oops/methodData.hpp" 33 #include "oops/objArrayKlass.hpp" 34 #include "oops/oop.inline.hpp" 35 #include "prims/methodHandles.hpp" 36 #include "runtime/sharedRuntime.hpp" 37 #include "runtime/stubRoutines.hpp" 38 #include "runtime/synchronizer.hpp" 39 #include "utilities/macros.hpp" 40 41 #ifndef CC_INTERP 42 43 #define __ _masm-> 44 45 // Global Register Names 46 Register rbcp = LP64_ONLY(r13) NOT_LP64(rsi); 47 Register rlocals = LP64_ONLY(r14) NOT_LP64(rdi); 48 49 // Platform-dependent initialization 50 void TemplateTable::pd_initialize() { 51 // No x86 specific initialization 52 } 53 54 // Address Computation: local variables 55 static inline Address iaddress(int n) { 56 return Address(rlocals, Interpreter::local_offset_in_bytes(n)); 57 } 58 59 static inline Address laddress(int n) { 60 return iaddress(n + 1); 61 } 62 63 #ifndef _LP64 64 static inline Address haddress(int n) { 65 return iaddress(n + 0); 66 } 67 #endif 68 69 static inline Address faddress(int n) { 70 return iaddress(n); 71 } 72 73 static inline Address daddress(int n) { 74 return laddress(n); 75 } 76 77 static inline Address aaddress(int n) { 78 return iaddress(n); 79 } 80 81 static inline Address iaddress(Register r) { 82 return Address(rlocals, r, Address::times_ptr); 83 } 84 85 static inline Address laddress(Register r) { 86 return Address(rlocals, r, Address::times_ptr, Interpreter::local_offset_in_bytes(1)); 87 } 88 89 #ifndef _LP64 90 static inline Address haddress(Register r) { 91 return Address(rlocals, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0)); 92 } 93 #endif 94 95 static inline Address faddress(Register r) { 96 return iaddress(r); 97 } 98 99 static inline Address daddress(Register r) { 100 return laddress(r); 101 } 102 103 static inline Address aaddress(Register r) { 104 return iaddress(r); 105 } 106 107 108 // expression stack 109 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store 110 // data beyond the rsp which is potentially unsafe in an MT environment; 111 // an interrupt may overwrite that data.) 112 static inline Address at_rsp () { 113 return Address(rsp, 0); 114 } 115 116 // At top of Java expression stack which may be different than esp(). It 117 // isn't for category 1 objects. 118 static inline Address at_tos () { 119 return Address(rsp, Interpreter::expr_offset_in_bytes(0)); 120 } 121 122 static inline Address at_tos_p1() { 123 return Address(rsp, Interpreter::expr_offset_in_bytes(1)); 124 } 125 126 static inline Address at_tos_p2() { 127 return Address(rsp, Interpreter::expr_offset_in_bytes(2)); 128 } 129 130 // Condition conversion 131 static Assembler::Condition j_not(TemplateTable::Condition cc) { 132 switch (cc) { 133 case TemplateTable::equal : return Assembler::notEqual; 134 case TemplateTable::not_equal : return Assembler::equal; 135 case TemplateTable::less : return Assembler::greaterEqual; 136 case TemplateTable::less_equal : return Assembler::greater; 137 case TemplateTable::greater : return Assembler::lessEqual; 138 case TemplateTable::greater_equal: return Assembler::less; 139 } 140 ShouldNotReachHere(); 141 return Assembler::zero; 142 } 143 144 145 146 // Miscelaneous helper routines 147 // Store an oop (or NULL) at the address described by obj. 148 // If val == noreg this means store a NULL 149 150 151 static void do_oop_store(InterpreterMacroAssembler masm, 152 Address obj, 153 Register val, 154 BarrierSet::Name barrier, 155 bool precise) { 156 assert(val == noreg || val == rax, "parameter is just for looks"); 157 switch (barrier) { 158 #if INCLUDE_ALL_GCS 159 case BarrierSet::G1SATBCTLogging: 160 { 161 // flatten object address if needed 162 // We do it regardless of precise because we need the registers 163 if (obj.index() == noreg && obj.disp() == 0) { 164 if (obj.base() != rdx) { 165 __ movptr(rdx, obj.base()); 166 } 167 } else { 168 __ lea(rdx, obj); 169 } 170 171 Register rtmp = LP64_ONLY(r8) NOT_LP64(rsi); 172 Register rthread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 173 174 NOT_LP64(_ get_thread(rcx)); 175 NOT_LP64(__ save_bcp()); 176 177 __ g1_write_barrier_pre(rdx /* obj /, 178 rbx / pre_val /, 179 rthread / thread /, 180 rtmp / tmp /, 181 val != noreg / tosca_live /, 182 false / expand_call /); 183 if (val == noreg) { 184 __ store_heap_oop_null(Address(rdx, 0)); 185 } else { 186 // G1 barrier needs uncompressed oop for region cross check. 187 Register new_val = val; 188 if (UseCompressedOops) { 189 new_val = rbx; 190 __ movptr(new_val, val); 191 } 192 __ store_heap_oop(Address(rdx, 0), val); 193 __ g1_write_barrier_post(rdx / store_adr /, 194 new_val / new_val /, 195 rthread / thread /, 196 rtmp / tmp /, 197 rbx / tmp2 /); 198 } 199 NOT_LP64( __ restore_bcp()); 200 } 201 break; 202 #endif // INCLUDE_ALL_GCS 203 case BarrierSet::CardTableModRef: 204 case BarrierSet::CardTableExtension: 205 { 206 if (val == noreg) { 207 __ store_heap_oop_null(obj); 208 } else { 209 __ store_heap_oop(obj, val); 210 // flatten object address if needed 211 if (!precise || (obj.index() == noreg && obj.disp() == 0)) { 212 __ store_check(obj.base()); 213 } else { 214 __ lea(rdx, obj); 215 __ store_check(rdx); 216 } 217 } 218 } 219 break; 220 case BarrierSet::ModRef: 221 if (val == noreg) { 222 __ store_heap_oop_null(obj); 223 } else { 224 __ store_heap_oop(obj, val); 225 } 226 break; 227 default : 228 ShouldNotReachHere(); 229 230 } 231 } 232 233 Address TemplateTable::at_bcp(int offset) { 234 assert(_desc->uses_bcp(), "inconsistent uses_bcp information"); 235 return Address(rbcp, offset); 236 } 237 238 239 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg, 240 Register temp_reg, bool load_bc_into_bc_reg/=true*/, 241 int byte_no) { 242 if (!RewriteBytecodes) return; 243 Label L_patch_done; 244 245 switch (bc) { 246 case Bytecodes::_fast_aputfield: 247 case Bytecodes::_fast_bputfield: 248 case Bytecodes::_fast_cputfield: 249 case Bytecodes::_fast_dputfield: 250 case Bytecodes::_fast_fputfield: 251 case Bytecodes::_fast_iputfield: 252 case Bytecodes::_fast_lputfield: 253 case Bytecodes::_fast_sputfield: 254 { 255 // We skip bytecode quickening for putfield instructions when 256 // the put_code written to the constant pool cache is zero. 257 // This is required so that every execution of this instruction 258 // calls out to InterpreterRuntime::resolve_get_put to do 259 // additional, required work. 260 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 261 assert(load_bc_into_bc_reg, "we use bc_reg as temp"); 262 __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1); 263 __ movl(bc_reg, bc); 264 __ cmpl(temp_reg, (int) 0); 265 __ jcc(Assembler::zero, L_patch_done); // don't patch 266 } 267 break; 268 default: 269 assert(byte_no == -1, "sanity"); 270 // the pair bytecodes have already done the load. 271 if (load_bc_into_bc_reg) { 272 __ movl(bc_reg, bc); 273 } 274 } 275 276 if (JvmtiExport::can_post_breakpoint()) { 277 Label L_fast_patch; 278 // if a breakpoint is present we can't rewrite the stream directly 279 __ movzbl(temp_reg, at_bcp(0)); 280 __ cmpl(temp_reg, Bytecodes::_breakpoint); 281 __ jcc(Assembler::notEqual, L_fast_patch); 282 __ get_method(temp_reg); 283 // Let breakpoint table handling rewrite to quicker bytecode 284 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rbcp, bc_reg); 285 #ifndef ASSERT 286 __ jmpb(L_patch_done); 287 #else 288 __ jmp(L_patch_done); 289 #endif 290 __ bind(L_fast_patch); 291 } 292 293 #ifdef ASSERT 294 Label L_okay; 295 __ load_unsigned_byte(temp_reg, at_bcp(0)); 296 __ cmpl(temp_reg, (int) Bytecodes::java_code(bc)); 297 __ jcc(Assembler::equal, L_okay); 298 __ cmpl(temp_reg, bc_reg); 299 __ jcc(Assembler::equal, L_okay); 300 __ stop("patching the wrong bytecode"); 301 __ bind(L_okay); 302 #endif 303 304 // patch bytecode 305 __ movb(at_bcp(0), bc_reg); 306 __ bind(L_patch_done); 307 } 308 // Individual instructions 309 310 311 void TemplateTable::nop() { 312 transition(vtos, vtos); 313 // nothing to do 314 } 315 316 void TemplateTable::shouldnotreachhere() { 317 transition(vtos, vtos); 318 __ stop("shouldnotreachhere bytecode"); 319 } 320 321 void TemplateTable::aconst_null() { 322 transition(vtos, atos); 323 __ xorl(rax, rax); 324 } 325 326 void TemplateTable::iconst(int value) { 327 transition(vtos, itos); 328 if (value == 0) { 329 __ xorl(rax, rax); 330 } else { 331 __ movl(rax, value); 332 } 333 } 334 335 void TemplateTable::lconst(int value) { 336 transition(vtos, ltos); 337 if (value == 0) { 338 __ xorl(rax, rax); 339 } else { 340 __ movl(rax, value); 341 } 342 #ifndef _LP64 343 assert(value >= 0, "check this code"); 344 __ xorptr(rdx, rdx); 345 #endif 346 } 347 348 349 350 void TemplateTable::fconst(int value) { 351 transition(vtos, ftos); 352 if (UseSSE >= 1) { 353 static float one = 1.0f, two = 2.0f; 354 switch (value) { 355 case 0: 356 __ xorps(xmm0, xmm0); 357 break; 358 case 1: 359 __ movflt(xmm0, ExternalAddress((address) &one)); 360 break; 361 case 2: 362 __ movflt(xmm0, ExternalAddress((address) &two)); 363 break; 364 default: 365 ShouldNotReachHere(); 366 break; 367 } 368 } else { 369 #ifdef _LP64 370 ShouldNotReachHere(); 371 #else 372 if (value == 0) { __ fldz(); 373 } else if (value == 1) { __ fld1(); 374 } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here 375 } else { ShouldNotReachHere(); 376 } 377 #endif // LP64 378 } 379 } 380 381 void TemplateTable::dconst(int value) { 382 transition(vtos, dtos); 383 if (UseSSE >= 2) { 384 static double one = 1.0; 385 switch (value) { 386 case 0: 387 __ xorpd(xmm0, xmm0); 388 break; 389 case 1: 390 __ movdbl(xmm0, ExternalAddress((address) &one)); 391 break; 392 default: 393 ShouldNotReachHere(); 394 break; 395 } 396 } else { 397 #ifdef LP64 398 ShouldNotReachHere(); 399 #else 400 if (value == 0) { __ fldz(); 401 } else if (value == 1) { __ fld1(); 402 } else { ShouldNotReachHere(); 403 } 404 #endif 405 } 406 } 407 408 void TemplateTable::bipush() { 409 transition(vtos, itos); 410 __ load_signed_byte(rax, at_bcp(1)); 411 } 412 413 void TemplateTable::sipush() { 414 transition(vtos, itos); 415 __ load_unsigned_short(rax, at_bcp(1)); 416 __ bswapl(rax); 417 __ sarl(rax, 16); 418 } 419 420 void TemplateTable::ldc(bool wide) { 421 transition(vtos, vtos); 422 Register rarg = NOT_LP64(rcx) LP64_ONLY(c_rarg1); 423 Label call_ldc, notFloat, notClass, Done; 424 425 if (wide) { 426 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 427 } else { 428 __ load_unsigned_byte(rbx, at_bcp(1)); 429 } 430 431 __ get_cpool_and_tags(rcx, rax); 432 const int base_offset = ConstantPool::header_size() * wordSize; 433 const int tags_offset = Array::base_offset_in_bytes(); 434 435 // get type 436 __ movzbl(rdx, Address(rax, rbx, Address::times_1, tags_offset)); 437 438 // unresolved class - get the resolved class 439 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass); 440 __ jccb(Assembler::equal, call_ldc); 441 442 // unresolved class in error state - call into runtime to throw the error 443 // from the first resolution attempt 444 __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError); 445 __ jccb(Assembler::equal, call_ldc); 446 447 // resolved class - need to call vm to get java mirror of the class 448 __ cmpl(rdx, JVM_CONSTANT_Class); 449 __ jcc(Assembler::notEqual, notClass); 450 451 __ bind(call_ldc); 452 453 __ movl(rarg, wide); 454 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rarg); 455 456 __ push(atos); 457 __ jmp(Done); 458 459 __ bind(notClass); 460 __ cmpl(rdx, JVM_CONSTANT_Float); 461 __ jccb(Assembler::notEqual, notFloat); 462 463 // ftos 464 __ load_float(Address(rcx, rbx, Address::times_ptr, base_offset)); 465 __ push(ftos); 466 __ jmp(Done); 467 468 __ bind(notFloat); 469 #ifdef ASSERT 470 { 471 Label L; 472 __ cmpl(rdx, JVM_CONSTANT_Integer); 473 __ jcc(Assembler::equal, L); 474 // String and Object are rewritten to fast_aldc 475 __ stop("unexpected tag type in ldc"); 476 __ bind(L); 477 } 478 #endif 479 // itos JVM_CONSTANT_Integer only 480 __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset)); 481 __ push(itos); 482 __ bind(Done); 483 } 484 485 // Fast path for caching oop constants. 486 void TemplateTable::fast_aldc(bool wide) { 487 transition(vtos, atos); 488 489 Register result = rax; 490 Register tmp = rdx; 491 int index_size = wide ? sizeof(u2) : sizeof(u1); 492 493 Label resolved; 494 495 // We are resolved if the resolved reference cache entry contains a 496 // non-null object (String, MethodType, etc.) 497 assert_different_registers(result, tmp); 498 __ get_cache_index_at_bcp(tmp, 1, index_size); 499 __ load_resolved_reference_at_index(result, tmp); 500 __ testl(result, result); 501 __ jcc(Assembler::notZero, resolved); 502 503 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc); 504 505 // first time invocation - must resolve first 506 __ movl(tmp, (int)bytecode()); 507 __ call_VM(result, entry, tmp); 508 509 __ bind(resolved); 510 511 if (VerifyOops) { 512 __ verify_oop(result); 513 } 514 } 515 516 void TemplateTable::ldc2_w() { 517 transition(vtos, vtos); 518 Label Long, Done; 519 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); 520 521 __ get_cpool_and_tags(rcx, rax); 522 const int base_offset = ConstantPool::header_size() * wordSize; 523 const int tags_offset = Array::base_offset_in_bytes(); 524 525 // get type 526 __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), 527 JVM_CONSTANT_Double); 528 __ jccb(Assembler::notEqual, Long); 529 530 // dtos 531 __ load_double(Address(rcx, rbx, Address::times_ptr, base_offset)); 532 __ push(dtos); 533 534 __ jmpb(Done); 535 __ bind(Long); 536 537 // ltos 538 __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize)); 539 NOT_LP64( movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize))); 540 __ push(ltos); 541 542 __ bind(Done); 543 } 544 545 void TemplateTable::locals_index(Register reg, int offset) { 546 __ load_unsigned_byte(reg, at_bcp(offset)); 547 __ negptr(reg); 548 } 549 550 void TemplateTable::iload() { 551 iload_internal(); 552 } 553 554 void TemplateTable::nofast_iload() { 555 iload_internal(may_not_rewrite); 556 } 557 558 void TemplateTable::iload_internal(RewriteControl rc) { 559 transition(vtos, itos); 560 if (RewriteFrequentPairs && rc == may_rewrite) { 561 Label rewrite, done; 562 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 563 LP64_ONLY(assert(rbx != bc, "register damaged")); 564 565 // get next byte 566 __ load_unsigned_byte(rbx, 567 at_bcp(Bytecodes::length_for(Bytecodes::_iload))); 568 // if iload, wait to rewrite to iload2. We only want to rewrite the 569 // last two iloads in a pair. Comparing against fast_iload means that 570 // the next bytecode is neither an iload or a caload, and therefore 571 // an iload pair. 572 __ cmpl(rbx, Bytecodes::iload); 573 __ jcc(Assembler::equal, done); 574 575 __ cmpl(rbx, Bytecodes::fast_iload); 576 __ movl(bc, Bytecodes::fast_iload2); 577 578 __ jccb(Assembler::equal, rewrite); 579 580 // if caload, rewrite to fast_icaload 581 __ cmpl(rbx, Bytecodes::caload); 582 __ movl(bc, Bytecodes::fast_icaload); 583 __ jccb(Assembler::equal, rewrite); 584 585 // rewrite so iload doesn't check again. 586 __ movl(bc, Bytecodes::fast_iload); 587 588 // rewrite 589 // bc: fast bytecode 590 __ bind(rewrite); 591 patch_bytecode(Bytecodes::iload, bc, rbx, false); 592 __ bind(done); 593 } 594 595 // Get the local value into tos 596 locals_index(rbx); 597 __ movl(rax, iaddress(rbx)); 598 } 599 600 void TemplateTable::fast_iload2() { 601 transition(vtos, itos); 602 locals_index(rbx); 603 __ movl(rax, iaddress(rbx)); 604 __ push(itos); 605 locals_index(rbx, 3); 606 __ movl(rax, iaddress(rbx)); 607 } 608 609 void TemplateTable::fast_iload() { 610 transition(vtos, itos); 611 locals_index(rbx); 612 __ movl(rax, iaddress(rbx)); 613 } 614 615 void TemplateTable::lload() { 616 transition(vtos, ltos); 617 locals_index(rbx); 618 __ movptr(rax, laddress(rbx)); 619 NOT_LP64( movl(rdx, haddress(rbx))); 620 } 621 622 void TemplateTable::fload() { 623 transition(vtos, ftos); 624 locals_index(rbx); 625 __ load_float(faddress(rbx)); 626 } 627 628 void TemplateTable::dload() { 629 transition(vtos, dtos); 630 locals_index(rbx); 631 __ load_double(daddress(rbx)); 632 } 633 634 void TemplateTable::aload() { 635 transition(vtos, atos); 636 locals_index(rbx); 637 __ movptr(rax, aaddress(rbx)); 638 } 639 640 void TemplateTable::locals_index_wide(Register reg) { 641 __ load_unsigned_short(reg, at_bcp(2)); 642 __ bswapl(reg); 643 __ shrl(reg, 16); 644 __ negptr(reg); 645 } 646 647 void TemplateTable::wide_iload() { 648 transition(vtos, itos); 649 locals_index_wide(rbx); 650 __ movl(rax, iaddress(rbx)); 651 } 652 653 void TemplateTable::wide_lload() { 654 transition(vtos, ltos); 655 locals_index_wide(rbx); 656 __ movptr(rax, laddress(rbx)); 657 NOT_LP64( movl(rdx, haddress(rbx))); 658 } 659 660 void TemplateTable::wide_fload() { 661 transition(vtos, ftos); 662 locals_index_wide(rbx); 663 __ load_float(faddress(rbx)); 664 } 665 666 void TemplateTable::wide_dload() { 667 transition(vtos, dtos); 668 locals_index_wide(rbx); 669 __ load_double(daddress(rbx)); 670 } 671 672 void TemplateTable::wide_aload() { 673 transition(vtos, atos); 674 locals_index_wide(rbx); 675 __ movptr(rax, aaddress(rbx)); 676 } 677 678 void TemplateTable::index_check(Register array, Register index) { 679 // Pop ptr into array 680 __ pop_ptr(array); 681 index_check_without_pop(array, index); 682 } 683 684 void TemplateTable::index_check_without_pop(Register array, Register index) { 685 // destroys rbx 686 // check array 687 __ null_check(array, arrayOopDesc::length_offset_in_bytes()); 688 // sign extend index for use by indexed load 689 __ movl2ptr(index, index); 690 // check index 691 __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes())); 692 if (index != rbx) { 693 // ??? convention: move aberrant index into rbx for exception message 694 assert(rbx != array, "different registers"); 695 __ movl(rbx, index); 696 } 697 __ jump_cc(Assembler::aboveEqual, 698 ExternalAddress(Interpreter::throw_ArrayIndexOutOfBoundsException_entry)); 699 } 700 701 702 void TemplateTable::iaload() { 703 transition(itos, itos); 704 // rax: index 705 // rdx: array 706 index_check(rdx, rax); // kills rbx 707 __ movl(rax, Address(rdx, rax, 708 Address::times_4, 709 arrayOopDesc::base_offset_in_bytes(T_INT))); 710 } 711 712 void TemplateTable::laload() { 713 transition(itos, ltos); 714 // rax: index 715 // rdx: array 716 index_check(rdx, rax); // kills rbx 717 NOT_LP64( mov(rbx, rax)); 718 // rbx,: index 719 __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize)); 720 NOT_LP64( movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize))); 721 } 722 723 724 725 void TemplateTable::faload() { 726 transition(itos, ftos); 727 // rax: index 728 // rdx: array 729 index_check(rdx, rax); // kills rbx 730 __ load_float(Address(rdx, rax, 731 Address::times_4, 732 arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 733 } 734 735 void TemplateTable::daload() { 736 transition(itos, dtos); 737 // rax: index 738 // rdx: array 739 index_check(rdx, rax); // kills rbx 740 __ load_double(Address(rdx, rax, 741 Address::times_8, 742 arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 743 } 744 745 void TemplateTable::aaload() { 746 transition(itos, atos); 747 // rax: index 748 // rdx: array 749 index_check(rdx, rax); // kills rbx 750 __ load_heap_oop(rax, Address(rdx, rax, 751 UseCompressedOops ? Address::times_4 : Address::times_ptr, 752 arrayOopDesc::base_offset_in_bytes(T_OBJECT))); 753 } 754 755 void TemplateTable::baload() { 756 transition(itos, itos); 757 // rax: index 758 // rdx: array 759 index_check(rdx, rax); // kills rbx 760 __ load_signed_byte(rax, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE))); 761 } 762 763 void TemplateTable::caload() { 764 transition(itos, itos); 765 // rax: index 766 // rdx: array 767 index_check(rdx, rax); // kills rbx 768 __ load_unsigned_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR))); 769 } 770 771 // iload followed by caload frequent pair 772 void TemplateTable::fast_icaload() { 773 transition(vtos, itos); 774 // load index out of locals 775 locals_index(rbx); 776 __ movl(rax, iaddress(rbx)); 777 778 // rax: index 779 // rdx: array 780 index_check(rdx, rax); // kills rbx 781 __ load_unsigned_short(rax, 782 Address(rdx, rax, 783 Address::times_2, 784 arrayOopDesc::base_offset_in_bytes(T_CHAR))); 785 } 786 787 788 void TemplateTable::saload() { 789 transition(itos, itos); 790 // rax: index 791 // rdx: array 792 index_check(rdx, rax); // kills rbx 793 __ load_signed_short(rax, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT))); 794 } 795 796 void TemplateTable::iload(int n) { 797 transition(vtos, itos); 798 __ movl(rax, iaddress(n)); 799 } 800 801 void TemplateTable::lload(int n) { 802 transition(vtos, ltos); 803 __ movptr(rax, laddress(n)); 804 NOT_LP64( movptr(rdx, haddress(n))); 805 } 806 807 void TemplateTable::fload(int n) { 808 transition(vtos, ftos); 809 __ load_float(faddress(n)); 810 } 811 812 void TemplateTable::dload(int n) { 813 transition(vtos, dtos); 814 __ load_double(daddress(n)); 815 } 816 817 void TemplateTable::aload(int n) { 818 transition(vtos, atos); 819 __ movptr(rax, aaddress(n)); 820 } 821 822 void TemplateTable::aload_0() { 823 aload_0_internal(); 824 } 825 826 void TemplateTable::nofast_aload_0() { 827 aload_0_internal(may_not_rewrite); 828 } 829 830 void TemplateTable::aload_0_internal(RewriteControl rc) { 831 transition(vtos, atos); 832 // According to bytecode histograms, the pairs: 833 // 834 // _aload_0, _fast_igetfield 835 // _aload_0, _fast_agetfield 836 // _aload_0, _fast_fgetfield 837 // 838 // occur frequently. If RewriteFrequentPairs is set, the (slow) 839 // _aload_0 bytecode checks if the next bytecode is either 840 // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then 841 // rewrites the current bytecode into a pair bytecode; otherwise it 842 // rewrites the current bytecode into _fast_aload_0 that doesn't do 843 // the pair check anymore. 844 // 845 // Note: If the next bytecode is _getfield, the rewrite must be 846 // delayed, otherwise we may miss an opportunity for a pair. 847 // 848 // Also rewrite frequent pairs 849 // aload_0, aload_1 850 // aload_0, iload_1 851 // These bytecodes with a small amount of code are most profitable 852 // to rewrite 853 if (RewriteFrequentPairs && rc == may_rewrite) { 854 Label rewrite, done; 855 856 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 857 LP64_ONLY(assert(rbx != bc, "register damaged")); 858 859 // get next byte 860 __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0))); 861 862 // do actual aload_0 863 aload(0); 864 865 // if _getfield then wait with rewrite 866 __ cmpl(rbx, Bytecodes::_getfield); 867 __ jcc(Assembler::equal, done); 868 869 // if _igetfield then reqrite to _fast_iaccess_0 870 assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 871 __ cmpl(rbx, Bytecodes::_fast_igetfield); 872 __ movl(bc, Bytecodes::_fast_iaccess_0); 873 __ jccb(Assembler::equal, rewrite); 874 875 // if _agetfield then reqrite to _fast_aaccess_0 876 assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition"); 877 __ cmpl(rbx, Bytecodes::_fast_agetfield); 878 __ movl(bc, Bytecodes::_fast_aaccess_0); 879 __ jccb(Assembler::equal, rewrite); 880 881 // if _fgetfield then reqrite to _fast_faccess_0 882 assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::aload_0, "fix bytecode definition"); 883 __ cmpl(rbx, Bytecodes::fast_fgetfield); 884 __ movl(bc, Bytecodes::fast_faccess_0); 885 __ jccb(Assembler::equal, rewrite); 886 887 // else rewrite to fast_aload0 888 assert(Bytecodes::java_code(Bytecodes::fast_aload_0) == Bytecodes::aload_0, "fix bytecode definition"); 889 __ movl(bc, Bytecodes::fast_aload_0); 890 891 // rewrite 892 // bc: fast bytecode 893 __ bind(rewrite); 894 patch_bytecode(Bytecodes::aload_0, bc, rbx, false); 895 896 __ bind(done); 897 } else { 898 aload(0); 899 } 900 } 901 902 void TemplateTable::istore() { 903 transition(itos, vtos); 904 locals_index(rbx); 905 __ movl(iaddress(rbx), rax); 906 } 907 908 909 void TemplateTable::lstore() { 910 transition(ltos, vtos); 911 locals_index(rbx); 912 __ movptr(laddress(rbx), rax); 913 NOT_LP64( movptr(haddress(rbx), rdx)); 914 } 915 916 void TemplateTable::fstore() { 917 transition(ftos, vtos); 918 locals_index(rbx); 919 __ store_float(faddress(rbx)); 920 } 921 922 void TemplateTable::dstore() { 923 transition(dtos, vtos); 924 locals_index(rbx); 925 __ store_double(daddress(rbx)); 926 } 927 928 void TemplateTable::astore() { 929 transition(vtos, vtos); 930 __ pop_ptr(rax); 931 locals_index(rbx); 932 __ movptr(aaddress(rbx), rax); 933 } 934 935 void TemplateTable::wide_istore() { 936 transition(vtos, vtos); 937 __ pop_i(); 938 locals_index_wide(rbx); 939 __ movl(iaddress(rbx), rax); 940 } 941 942 void TemplateTable::wide_lstore() { 943 transition(vtos, vtos); 944 NOT_LP64( pop_l(rax, rdx)); 945 LP64_ONLY( pop_l()); 946 locals_index_wide(rbx); 947 __ movptr(laddress(rbx), rax); 948 NOT_LP64( movl(haddress(rbx), rdx)); 949 } 950 951 void TemplateTable::wide_fstore() { 952 #ifdef LP64 953 transition(vtos, vtos); 954 __ pop_f(xmm0); 955 locals_index_wide(rbx); 956 __ movflt(faddress(rbx), xmm0); 957 #else 958 wide_istore(); 959 #endif 960 } 961 962 void TemplateTable::wide_dstore() { 963 #ifdef LP64 964 transition(vtos, vtos); 965 __ pop_d(xmm0); 966 locals_index_wide(rbx); 967 __ movdbl(daddress(rbx), xmm0); 968 #else 969 wide_lstore(); 970 #endif 971 } 972 973 void TemplateTable::wide_astore() { 974 transition(vtos, vtos); 975 __ pop_ptr(rax); 976 locals_index_wide(rbx); 977 __ movptr(aaddress(rbx), rax); 978 } 979 980 void TemplateTable::iastore() { 981 transition(itos, vtos); 982 __ pop_i(rbx); 983 // rax: value 984 // rbx: index 985 // rdx: array 986 index_check(rdx, rbx); // prefer index in rbx 987 __ movl(Address(rdx, rbx, 988 Address::times_4, 989 arrayOopDesc::base_offset_in_bytes(T_INT)), 990 rax); 991 } 992 993 void TemplateTable::lastore() { 994 transition(ltos, vtos); 995 __ pop_i(rbx); 996 // rax,: low(value) 997 // rcx: array 998 // rdx: high(value) 999 index_check(rcx, rbx); // prefer index in rbx, 1000 // rbx,: index 1001 __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax); 1002 NOT_LP64( movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx)); 1003 } 1004 1005 1006 void TemplateTable::fastore() { 1007 transition(ftos, vtos); 1008 __ pop_i(rbx); 1009 // value is in UseSSE >= 1 ? xmm0 : ST(0) 1010 // rbx: index 1011 // rdx: array 1012 index_check(rdx, rbx); // prefer index in rbx 1013 __ store_float(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT))); 1014 } 1015 1016 void TemplateTable::dastore() { 1017 transition(dtos, vtos); 1018 __ pop_i(rbx); 1019 // value is in UseSSE >= 2 ? xmm0 : ST(0) 1020 // rbx: index 1021 // rdx: array 1022 index_check(rdx, rbx); // prefer index in rbx 1023 __ store_double(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE))); 1024 } 1025 1026 void TemplateTable::aastore() { 1027 Label is_null, ok_is_subtype, done; 1028 transition(vtos, vtos); 1029 // stack: ..., array, index, value 1030 __ movptr(rax, at_tos()); // value 1031 __ movl(rcx, at_tos_p1()); // index 1032 __ movptr(rdx, at_tos_p2()); // array 1033 1034 Address element_address(rdx, rcx, 1035 UseCompressedOops? Address::times_4 : Address::times_ptr, 1036 arrayOopDesc::base_offset_in_bytes(T_OBJECT)); 1037 1038 index_check_without_pop(rdx, rcx); // kills rbx 1039 __ testptr(rax, rax); 1040 __ jcc(Assembler::zero, is_null); 1041 1042 // Move subklass into rbx 1043 __ load_klass(rbx, rax); 1044 // Move superklass into rax 1045 __ load_klass(rax, rdx); 1046 __ movptr(rax, Address(rax, 1047 ObjArrayKlass::element_klass_offset())); 1048 // Compress array + indexoopSize + 12 into a single register. Frees rcx. 1049 __ lea(rdx, element_address); 1050 1051 // Generate subtype check. Blows rcx, rdi 1052 // Superklass in rax. Subklass in rbx. 1053 __ gen_subtype_check(rbx, ok_is_subtype); 1054 1055 // Come here on failure 1056 // object is at TOS 1057 __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry)); 1058 1059 // Come here on success 1060 __ bind(ok_is_subtype); 1061 1062 // Get the value we will store 1063 __ movptr(rax, at_tos()); 1064 // Now store using the appropriate barrier 1065 do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true); 1066 __ jmp(done); 1067 1068 // Have a NULL in rax, rdx=array, ecx=index. Store NULL at ary[idx] 1069 __ bind(is_null); 1070 __ profile_null_seen(rbx); 1071 1072 // Store a NULL 1073 do_oop_store(masm, element_address, noreg, bs->kind(), true); 1074 1075 // Pop stack arguments 1076 __ bind(done); 1077 __ addptr(rsp, 3 * Interpreter::stackElementSize); 1078 } 1079 1080 void TemplateTable::bastore() { 1081 transition(itos, vtos); 1082 __ pop_i(rbx); 1083 // rax: value 1084 // rbx: index 1085 // rdx: array 1086 index_check(rdx, rbx); // prefer index in rbx 1087 __ movb(Address(rdx, rbx, 1088 Address::times_1, 1089 arrayOopDesc::base_offset_in_bytes(T_BYTE)), 1090 rax); 1091 } 1092 1093 void TemplateTable::castore() { 1094 transition(itos, vtos); 1095 __ pop_i(rbx); 1096 // rax: value 1097 // rbx: index 1098 // rdx: array 1099 index_check(rdx, rbx); // prefer index in rbx 1100 __ movw(Address(rdx, rbx, 1101 Address::times_2, 1102 arrayOopDesc::base_offset_in_bytes(T_CHAR)), 1103 rax); 1104 } 1105 1106 1107 void TemplateTable::sastore() { 1108 castore(); 1109 } 1110 1111 void TemplateTable::istore(int n) { 1112 transition(itos, vtos); 1113 __ movl(iaddress(n), rax); 1114 } 1115 1116 void TemplateTable::lstore(int n) { 1117 transition(ltos, vtos); 1118 __ movptr(laddress(n), rax); 1119 NOT_LP64( movptr(haddress(n), rdx)); 1120 } 1121 1122 void TemplateTable::fstore(int n) { 1123 transition(ftos, vtos); 1124 __ store_float(faddress(n)); 1125 } 1126 1127 void TemplateTable::dstore(int n) { 1128 transition(dtos, vtos); 1129 __ store_double(daddress(n)); 1130 } 1131 1132 1133 void TemplateTable::astore(int n) { 1134 transition(vtos, vtos); 1135 __ pop_ptr(rax); 1136 __ movptr(aaddress(n), rax); 1137 } 1138 1139 void TemplateTable::pop() { 1140 transition(vtos, vtos); 1141 __ addptr(rsp, Interpreter::stackElementSize); 1142 } 1143 1144 void TemplateTable::pop2() { 1145 transition(vtos, vtos); 1146 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1147 } 1148 1149 1150 void TemplateTable::dup() { 1151 transition(vtos, vtos); 1152 __ load_ptr(0, rax); 1153 __ push_ptr(rax); 1154 // stack: ..., a, a 1155 } 1156 1157 void TemplateTable::dup_x1() { 1158 transition(vtos, vtos); 1159 // stack: ..., a, b 1160 __ load_ptr( 0, rax); // load b 1161 __ load_ptr( 1, rcx); // load a 1162 __ store_ptr(1, rax); // store b 1163 __ store_ptr(0, rcx); // store a 1164 __ push_ptr(rax); // push b 1165 // stack: ..., b, a, b 1166 } 1167 1168 void TemplateTable::dup_x2() { 1169 transition(vtos, vtos); 1170 // stack: ..., a, b, c 1171 __ load_ptr( 0, rax); // load c 1172 __ load_ptr( 2, rcx); // load a 1173 __ store_ptr(2, rax); // store c in a 1174 __ push_ptr(rax); // push c 1175 // stack: ..., c, b, c, c 1176 __ load_ptr( 2, rax); // load b 1177 __ store_ptr(2, rcx); // store a in b 1178 // stack: ..., c, a, c, c 1179 __ store_ptr(1, rax); // store b in c 1180 // stack: ..., c, a, b, c 1181 } 1182 1183 void TemplateTable::dup2() { 1184 transition(vtos, vtos); 1185 // stack: ..., a, b 1186 __ load_ptr(1, rax); // load a 1187 __ push_ptr(rax); // push a 1188 __ load_ptr(1, rax); // load b 1189 __ push_ptr(rax); // push b 1190 // stack: ..., a, b, a, b 1191 } 1192 1193 1194 void TemplateTable::dup2_x1() { 1195 transition(vtos, vtos); 1196 // stack: ..., a, b, c 1197 __ load_ptr( 0, rcx); // load c 1198 __ load_ptr( 1, rax); // load b 1199 __ push_ptr(rax); // push b 1200 __ push_ptr(rcx); // push c 1201 // stack: ..., a, b, c, b, c 1202 __ store_ptr(3, rcx); // store c in b 1203 // stack: ..., a, c, c, b, c 1204 __ load_ptr( 4, rcx); // load a 1205 __ store_ptr(2, rcx); // store a in 2nd c 1206 // stack: ..., a, c, a, b, c 1207 __ store_ptr(4, rax); // store b in a 1208 // stack: ..., b, c, a, b, c 1209 } 1210 1211 void TemplateTable::dup2_x2() { 1212 transition(vtos, vtos); 1213 // stack: ..., a, b, c, d 1214 __ load_ptr( 0, rcx); // load d 1215 __ load_ptr( 1, rax); // load c 1216 __ push_ptr(rax); // push c 1217 __ push_ptr(rcx); // push d 1218 // stack: ..., a, b, c, d, c, d 1219 __ load_ptr( 4, rax); // load b 1220 __ store_ptr(2, rax); // store b in d 1221 __ store_ptr(4, rcx); // store d in b 1222 // stack: ..., a, d, c, b, c, d 1223 __ load_ptr( 5, rcx); // load a 1224 __ load_ptr( 3, rax); // load c 1225 __ store_ptr(3, rcx); // store a in c 1226 __ store_ptr(5, rax); // store c in a 1227 // stack: ..., c, d, a, b, c, d 1228 } 1229 1230 void TemplateTable::swap() { 1231 transition(vtos, vtos); 1232 // stack: ..., a, b 1233 __ load_ptr( 1, rcx); // load a 1234 __ load_ptr( 0, rax); // load b 1235 __ store_ptr(0, rcx); // store a in b 1236 __ store_ptr(1, rax); // store b in a 1237 // stack: ..., b, a 1238 } 1239 1240 void TemplateTable::iop2(Operation op) { 1241 transition(itos, itos); 1242 switch (op) { 1243 case add : __ pop_i(rdx); __ addl (rax, rdx); break; 1244 case sub : __ movl(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break; 1245 case mul : __ pop_i(rdx); __ imull(rax, rdx); break; 1246 case _and : __ pop_i(rdx); __ andl (rax, rdx); break; 1247 case _or : __ pop_i(rdx); __ orl (rax, rdx); break; 1248 case _xor : __ pop_i(rdx); __ xorl (rax, rdx); break; 1249 case shl : __ movl(rcx, rax); __ pop_i(rax); __ shll (rax); break; 1250 case shr : __ movl(rcx, rax); __ pop_i(rax); __ sarl (rax); break; 1251 case ushr : __ movl(rcx, rax); __ pop_i(rax); __ shrl (rax); break; 1252 default : ShouldNotReachHere(); 1253 } 1254 } 1255 1256 void TemplateTable::lop2(Operation op) { 1257 transition(ltos, ltos); 1258 #ifdef _LP64 1259 switch (op) { 1260 case add : __ pop_l(rdx); __ addptr(rax, rdx); break; 1261 case sub : __ mov(rdx, rax); __ pop_l(rax); __ subptr(rax, rdx); break; 1262 case _and : __ pop_l(rdx); __ andptr(rax, rdx); break; 1263 case _or : __ pop_l(rdx); __ orptr (rax, rdx); break; 1264 case _xor : __ pop_l(rdx); __ xorptr(rax, rdx); break; 1265 default : ShouldNotReachHere(); 1266 } 1267 #else 1268 __ pop_l(rbx, rcx); 1269 switch (op) { 1270 case add : __ addl(rax, rbx); __ adcl(rdx, rcx); break; 1271 case sub : __ subl(rbx, rax); __ sbbl(rcx, rdx); 1272 __ mov (rax, rbx); __ mov (rdx, rcx); break; 1273 case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break; 1274 case _or : __ orl (rax, rbx); __ orl (rdx, rcx); break; 1275 case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break; 1276 default : ShouldNotReachHere(); 1277 } 1278 #endif 1279 } 1280 1281 void TemplateTable::idiv() { 1282 transition(itos, itos); 1283 __ movl(rcx, rax); 1284 __ pop_i(rax); 1285 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1286 // they are not equal, one could do a normal division (no correction 1287 // needed), which may speed up this implementation for the common case. 1288 // (see also JVM spec., p.243 & p.271) 1289 __ corrected_idivl(rcx); 1290 } 1291 1292 void TemplateTable::irem() { 1293 transition(itos, itos); 1294 __ movl(rcx, rax); 1295 __ pop_i(rax); 1296 // Note: could xor rax and ecx and compare with (-1 ^ min_int). If 1297 // they are not equal, one could do a normal division (no correction 1298 // needed), which may speed up this implementation for the common case. 1299 // (see also JVM spec., p.243 & p.271) 1300 __ corrected_idivl(rcx); 1301 __ movl(rax, rdx); 1302 } 1303 1304 void TemplateTable::lmul() { 1305 transition(ltos, ltos); 1306 #ifdef _LP64 1307 __ pop_l(rdx); 1308 __ imulq(rax, rdx); 1309 #else 1310 __ pop_l(rbx, rcx); 1311 __ push(rcx); __ push(rbx); 1312 __ push(rdx); __ push(rax); 1313 __ lmul(2 * wordSize, 0); 1314 __ addptr(rsp, 4 * wordSize); // take off temporaries 1315 #endif 1316 } 1317 1318 void TemplateTable::ldiv() { 1319 transition(ltos, ltos); 1320 #ifdef _LP64 1321 __ mov(rcx, rax); 1322 __ pop_l(rax); 1323 // generate explicit div0 check 1324 __ testq(rcx, rcx); 1325 __ jump_cc(Assembler::zero, 1326 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1327 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1328 // they are not equal, one could do a normal division (no correction 1329 // needed), which may speed up this implementation for the common case. 1330 // (see also JVM spec., p.243 & p.271) 1331 __ corrected_idivq(rcx); // kills rbx 1332 #else 1333 __ pop_l(rbx, rcx); 1334 __ push(rcx); __ push(rbx); 1335 __ push(rdx); __ push(rax); 1336 // check if y = 0 1337 __ orl(rax, rdx); 1338 __ jump_cc(Assembler::zero, 1339 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1340 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv)); 1341 __ addptr(rsp, 4 * wordSize); // take off temporaries 1342 #endif 1343 } 1344 1345 void TemplateTable::lrem() { 1346 transition(ltos, ltos); 1347 #ifdef _LP64 1348 __ mov(rcx, rax); 1349 __ pop_l(rax); 1350 __ testq(rcx, rcx); 1351 __ jump_cc(Assembler::zero, 1352 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1353 // Note: could xor rax and rcx and compare with (-1 ^ min_int). If 1354 // they are not equal, one could do a normal division (no correction 1355 // needed), which may speed up this implementation for the common case. 1356 // (see also JVM spec., p.243 & p.271) 1357 __ corrected_idivq(rcx); // kills rbx 1358 __ mov(rax, rdx); 1359 #else 1360 __ pop_l(rbx, rcx); 1361 __ push(rcx); __ push(rbx); 1362 __ push(rdx); __ push(rax); 1363 // check if y = 0 1364 __ orl(rax, rdx); 1365 __ jump_cc(Assembler::zero, 1366 ExternalAddress(Interpreter::_throw_ArithmeticException_entry)); 1367 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem)); 1368 __ addptr(rsp, 4 * wordSize); 1369 #endif 1370 } 1371 1372 void TemplateTable::lshl() { 1373 transition(itos, ltos); 1374 __ movl(rcx, rax); // get shift count 1375 #ifdef _LP64 1376 __ pop_l(rax); // get shift value 1377 __ shlq(rax); 1378 #else 1379 __ pop_l(rax, rdx); // get shift value 1380 __ lshl(rdx, rax); 1381 #endif 1382 } 1383 1384 void TemplateTable::lshr() { 1385 #ifdef _LP64 1386 transition(itos, ltos); 1387 __ movl(rcx, rax); // get shift count 1388 __ pop_l(rax); // get shift value 1389 __ sarq(rax); 1390 #else 1391 transition(itos, ltos); 1392 __ mov(rcx, rax); // get shift count 1393 __ pop_l(rax, rdx); // get shift value 1394 __ lshr(rdx, rax, true); 1395 #endif 1396 } 1397 1398 void TemplateTable::lushr() { 1399 transition(itos, ltos); 1400 #ifdef _LP64 1401 __ movl(rcx, rax); // get shift count 1402 __ pop_l(rax); // get shift value 1403 __ shrq(rax); 1404 #else 1405 __ mov(rcx, rax); // get shift count 1406 __ pop_l(rax, rdx); // get shift value 1407 __ lshr(rdx, rax); 1408 #endif 1409 } 1410 1411 void TemplateTable::fop2(Operation op) { 1412 transition(ftos, ftos); 1413 1414 if (UseSSE >= 1) { 1415 switch (op) { 1416 case add: 1417 __ addss(xmm0, at_rsp()); 1418 __ addptr(rsp, Interpreter::stackElementSize); 1419 break; 1420 case sub: 1421 __ movflt(xmm1, xmm0); 1422 __ pop_f(xmm0); 1423 __ subss(xmm0, xmm1); 1424 break; 1425 case mul: 1426 __ mulss(xmm0, at_rsp()); 1427 __ addptr(rsp, Interpreter::stackElementSize); 1428 break; 1429 case div: 1430 __ movflt(xmm1, xmm0); 1431 __ pop_f(xmm0); 1432 __ divss(xmm0, xmm1); 1433 break; 1434 case rem: 1435 // On x86_64 platforms the SharedRuntime::frem method is called to perform the 1436 // modulo operation. The frem method calls the function 1437 // double fmod(double x, double y) in math.h. The documentation of fmod states: 1438 // "If x or y is a NaN, a NaN is returned." without specifying what type of NaN 1439 // (signalling or quiet) is returned. 1440 // 1441 // On x86_32 platforms the FPU is used to perform the modulo operation. The 1442 // reason is that on 32-bit Windows the sign of modulo operations diverges from 1443 // what is considered the standard (e.g., -0.0f % -3.14f is 0.0f (and not -0.0f). 1444 // The fprem instruction used on x86_32 is functionally equivalent to 1445 // SharedRuntime::frem in that it returns a NaN. 1446 #ifdef _LP64 1447 __ movflt(xmm1, xmm0); 1448 __ pop_f(xmm0); 1449 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem), 2); 1450 #else 1451 __ push_f(xmm0); 1452 __ pop_f(); 1453 __ fld_s(at_rsp()); 1454 __ fremr(rax); 1455 __ f2ieee(); 1456 __ pop(rax); // pop second operand off the stack 1457 __ push_f(); 1458 __ pop_f(xmm0); 1459 #endif 1460 break; 1461 default: 1462 ShouldNotReachHere(); 1463 break; 1464 } 1465 } else { 1466 #ifdef LP64 1467 ShouldNotReachHere(); 1468 #else 1469 switch (op) { 1470 case add: __ fadd_s (at_rsp()); break; 1471 case sub: __ fsubr_s(at_rsp()); break; 1472 case mul: __ fmul_s (at_rsp()); break; 1473 case div: __ fdivr_s(at_rsp()); break; 1474 case rem: __ fld_s (at_rsp()); __ fremr(rax); break; 1475 default : ShouldNotReachHere(); 1476 } 1477 __ f2ieee(); 1478 __ pop(rax); // pop second operand off the stack 1479 #endif // LP64 1480 } 1481 } 1482 1483 void TemplateTable::dop2(Operation op) { 1484 transition(dtos, dtos); 1485 if (UseSSE >= 2) { 1486 switch (op) { 1487 case add: 1488 __ addsd(xmm0, at_rsp()); 1489 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1490 break; 1491 case sub: 1492 __ movdbl(xmm1, xmm0); 1493 __ pop_d(xmm0); 1494 __ subsd(xmm0, xmm1); 1495 break; 1496 case mul: 1497 __ mulsd(xmm0, at_rsp()); 1498 __ addptr(rsp, 2 * Interpreter::stackElementSize); 1499 break; 1500 case div: 1501 __ movdbl(xmm1, xmm0); 1502 __ pop_d(xmm0); 1503 __ divsd(xmm0, xmm1); 1504 break; 1505 case rem: 1506 // Similar to fop2(), the modulo operation is performed using the 1507 // SharedRuntime::drem method (on x86_64 platforms) or using the 1508 // FPU (on x86_32 platforms) for the same reasons as mentioned in fop2(). 1509 #ifdef LP64 1510 __ movdbl(xmm1, xmm0); 1511 __ pop_d(xmm0); 1512 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem), 2); 1513 #else 1514 __ push_d(xmm0); 1515 __ pop_d(); 1516 __ fld_d(at_rsp()); 1517 __ fremr(rax); 1518 __ d2ieee(); 1519 __ pop(rax); 1520 __ pop(rdx); 1521 __ push_d(); 1522 __ pop_d(xmm0); 1523 #endif 1524 break; 1525 default: 1526 ShouldNotReachHere(); 1527 break; 1528 } 1529 } else { 1530 #ifdef LP64 1531 ShouldNotReachHere(); 1532 #else 1533 switch (op) { 1534 case add: __ fadd_d (at_rsp()); break; 1535 case sub: __ fsubr_d(at_rsp()); break; 1536 case mul: { 1537 Label L_strict; 1538 Label L_join; 1539 const Address access_flags (rcx, Method::access_flags_offset()); 1540 __ get_method(rcx); 1541 __ movl(rcx, access_flags); 1542 __ testl(rcx, JVM_ACC_STRICT); 1543 __ jccb(Assembler::notZero, L_strict); 1544 __ fmul_d (at_rsp()); 1545 __ jmpb(L_join); 1546 __ bind(L_strict); 1547 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1548 __ fmulp(); 1549 __ fmul_d (at_rsp()); 1550 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1551 __ fmulp(); 1552 __ bind(L_join); 1553 break; 1554 } 1555 case div: { 1556 Label L_strict; 1557 Label L_join; 1558 const Address access_flags (rcx, Method::access_flags_offset()); 1559 __ get_method(rcx); 1560 __ movl(rcx, access_flags); 1561 __ testl(rcx, JVM_ACC_STRICT); 1562 __ jccb(Assembler::notZero, L_strict); 1563 __ fdivr_d(at_rsp()); 1564 __ jmp(L_join); 1565 __ bind(L_strict); 1566 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1())); 1567 __ fmul_d (at_rsp()); 1568 __ fdivrp(); 1569 __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2())); 1570 __ fmulp(); 1571 __ bind(L_join); 1572 break; 1573 } 1574 case rem: __ fld_d (at_rsp()); __ fremr(rax); break; 1575 default : ShouldNotReachHere(); 1576 } 1577 __ d2ieee(); 1578 // Pop double precision number from rsp. 1579 __ pop(rax); 1580 __ pop(rdx); 1581 #endif 1582 } 1583 } 1584 1585 void TemplateTable::ineg() { 1586 transition(itos, itos); 1587 __ negl(rax); 1588 } 1589 1590 void TemplateTable::lneg() { 1591 transition(ltos, ltos); 1592 LP64_ONLY( negq(rax)); 1593 NOT_LP64( lneg(rdx, rax)); 1594 } 1595 1596 // Note: 'double' and 'long long' have 32-bits alignment on x86. 1597 static jlong double_quadword(jlong adr, jlong lo, jlong hi) { 1598 // Use the expression (adr)&(0xF) to provide 128-bits aligned address 1599 // of 128-bits operands for SSE instructions. 1600 jlong operand = (jlong)(((intptr_t)adr)&((intptr_t)(0xF))); 1601 // Store the value to a 128-bits operand. 1602 operand[0] = lo; 1603 operand[1] = hi; 1604 return operand; 1605 } 1606 1607 // Buffer for 128-bits masks used by SSE instructions. 1608 static jlong float_signflip_pool[22]; 1609 static jlong double_signflip_pool[22]; 1610 1611 void TemplateTable::fneg() { 1612 transition(ftos, ftos); 1613 if (UseSSE >= 1) { 1614 static jlong float_signflip = double_quadword(&float_signflip_pool[1], 0x8000000080000000, 0x8000000080000000); 1615 __ xorps(xmm0, ExternalAddress((address) float_signflip)); 1616 } else { 1617 LP64_ONLY(ShouldNotReachHere()); 1618 NOT_LP64(__ fchs()); 1619 } 1620 } 1621 1622 void TemplateTable::dneg() { 1623 transition(dtos, dtos); 1624 if (UseSSE >= 2) { 1625 static jlong double_signflip = double_quadword(&double_signflip_pool[1], 0x8000000000000000, 0x8000000000000000); 1626 __ xorpd(xmm0, ExternalAddress((address) double_signflip)); 1627 } else { 1628 #ifdef _LP64 1629 ShouldNotReachHere(); 1630 #else 1631 __ fchs(); 1632 #endif 1633 } 1634 } 1635 1636 void TemplateTable::iinc() { 1637 transition(vtos, vtos); 1638 __ load_signed_byte(rdx, at_bcp(2)); // get constant 1639 locals_index(rbx); 1640 __ addl(iaddress(rbx), rdx); 1641 } 1642 1643 void TemplateTable::wide_iinc() { 1644 transition(vtos, vtos); 1645 __ movl(rdx, at_bcp(4)); // get constant 1646 locals_index_wide(rbx); 1647 __ bswapl(rdx); // swap bytes & sign-extend constant 1648 __ sarl(rdx, 16); 1649 __ addl(iaddress(rbx), rdx); 1650 // Note: should probably use only one movl to get both 1651 // the index and the constant -> fix this 1652 } 1653 1654 void TemplateTable::convert() { 1655 #ifdef _LP64 1656 // Checking 1657 #ifdef ASSERT 1658 { 1659 TosState tos_in = ilgl; 1660 TosState tos_out = ilgl; 1661 switch (bytecode()) { 1662 case Bytecodes::_i2l: // fall through 1663 case Bytecodes::_i2f: // fall through 1664 case Bytecodes::_i2d: // fall through 1665 case Bytecodes::_i2b: // fall through 1666 case Bytecodes::_i2c: // fall through 1667 case Bytecodes::_i2s: tos_in = itos; break; 1668 case Bytecodes::_l2i: // fall through 1669 case Bytecodes::_l2f: // fall through 1670 case Bytecodes::_l2d: tos_in = ltos; break; 1671 case Bytecodes::_f2i: // fall through 1672 case Bytecodes::_f2l: // fall through 1673 case Bytecodes::_f2d: tos_in = ftos; break; 1674 case Bytecodes::_d2i: // fall through 1675 case Bytecodes::_d2l: // fall through 1676 case Bytecodes::_d2f: tos_in = dtos; break; 1677 default : ShouldNotReachHere(); 1678 } 1679 switch (bytecode()) { 1680 case Bytecodes::_l2i: // fall through 1681 case Bytecodes::_f2i: // fall through 1682 case Bytecodes::_d2i: // fall through 1683 case Bytecodes::_i2b: // fall through 1684 case Bytecodes::_i2c: // fall through 1685 case Bytecodes::_i2s: tos_out = itos; break; 1686 case Bytecodes::_i2l: // fall through 1687 case Bytecodes::_f2l: // fall through 1688 case Bytecodes::_d2l: tos_out = ltos; break; 1689 case Bytecodes::_i2f: // fall through 1690 case Bytecodes::_l2f: // fall through 1691 case Bytecodes::_d2f: tos_out = ftos; break; 1692 case Bytecodes::_i2d: // fall through 1693 case Bytecodes::_l2d: // fall through 1694 case Bytecodes::_f2d: tos_out = dtos; break; 1695 default : ShouldNotReachHere(); 1696 } 1697 transition(tos_in, tos_out); 1698 } 1699 #endif // ASSERT 1700 1701 static const int64_t is_nan = 0x8000000000000000L; 1702 1703 // Conversion 1704 switch (bytecode()) { 1705 case Bytecodes::_i2l: 1706 __ movslq(rax, rax); 1707 break; 1708 case Bytecodes::_i2f: 1709 __ cvtsi2ssl(xmm0, rax); 1710 break; 1711 case Bytecodes::_i2d: 1712 __ cvtsi2sdl(xmm0, rax); 1713 break; 1714 case Bytecodes::_i2b: 1715 __ movsbl(rax, rax); 1716 break; 1717 case Bytecodes::_i2c: 1718 __ movzwl(rax, rax); 1719 break; 1720 case Bytecodes::_i2s: 1721 __ movswl(rax, rax); 1722 break; 1723 case Bytecodes::_l2i: 1724 __ movl(rax, rax); 1725 break; 1726 case Bytecodes::_l2f: 1727 __ cvtsi2ssq(xmm0, rax); 1728 break; 1729 case Bytecodes::_l2d: 1730 __ cvtsi2sdq(xmm0, rax); 1731 break; 1732 case Bytecodes::_f2i: 1733 { 1734 Label L; 1735 __ cvttss2sil(rax, xmm0); 1736 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1737 __ jcc(Assembler::notEqual, L); 1738 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1739 __ bind(L); 1740 } 1741 break; 1742 case Bytecodes::_f2l: 1743 { 1744 Label L; 1745 __ cvttss2siq(rax, xmm0); 1746 // NaN or overflow/underflow? 1747 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1748 __ jcc(Assembler::notEqual, L); 1749 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1750 __ bind(L); 1751 } 1752 break; 1753 case Bytecodes::_f2d: 1754 __ cvtss2sd(xmm0, xmm0); 1755 break; 1756 case Bytecodes::_d2i: 1757 { 1758 Label L; 1759 __ cvttsd2sil(rax, xmm0); 1760 __ cmpl(rax, 0x80000000); // NaN or overflow/underflow? 1761 __ jcc(Assembler::notEqual, L); 1762 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 1); 1763 __ bind(L); 1764 } 1765 break; 1766 case Bytecodes::_d2l: 1767 { 1768 Label L; 1769 __ cvttsd2siq(rax, xmm0); 1770 // NaN or overflow/underflow? 1771 __ cmp64(rax, ExternalAddress((address) &is_nan)); 1772 __ jcc(Assembler::notEqual, L); 1773 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 1); 1774 __ bind(L); 1775 } 1776 break; 1777 case Bytecodes::_d2f: 1778 __ cvtsd2ss(xmm0, xmm0); 1779 break; 1780 default: 1781 ShouldNotReachHere(); 1782 } 1783 #else 1784 // Checking 1785 #ifdef ASSERT 1786 { TosState tos_in = ilgl; 1787 TosState tos_out = ilgl; 1788 switch (bytecode()) { 1789 case Bytecodes::_i2l: // fall through 1790 case Bytecodes::_i2f: // fall through 1791 case Bytecodes::_i2d: // fall through 1792 case Bytecodes::_i2b: // fall through 1793 case Bytecodes::_i2c: // fall through 1794 case Bytecodes::_i2s: tos_in = itos; break; 1795 case Bytecodes::_l2i: // fall through 1796 case Bytecodes::_l2f: // fall through 1797 case Bytecodes::_l2d: tos_in = ltos; break; 1798 case Bytecodes::_f2i: // fall through 1799 case Bytecodes::_f2l: // fall through 1800 case Bytecodes::_f2d: tos_in = ftos; break; 1801 case Bytecodes::_d2i: // fall through 1802 case Bytecodes::_d2l: // fall through 1803 case Bytecodes::_d2f: tos_in = dtos; break; 1804 default : ShouldNotReachHere(); 1805 } 1806 switch (bytecode()) { 1807 case Bytecodes::_l2i: // fall through 1808 case Bytecodes::_f2i: // fall through 1809 case Bytecodes::_d2i: // fall through 1810 case Bytecodes::_i2b: // fall through 1811 case Bytecodes::_i2c: // fall through 1812 case Bytecodes::_i2s: tos_out = itos; break; 1813 case Bytecodes::_i2l: // fall through 1814 case Bytecodes::_f2l: // fall through 1815 case Bytecodes::_d2l: tos_out = ltos; break; 1816 case Bytecodes::_i2f: // fall through 1817 case Bytecodes::_l2f: // fall through 1818 case Bytecodes::_d2f: tos_out = ftos; break; 1819 case Bytecodes::_i2d: // fall through 1820 case Bytecodes::_l2d: // fall through 1821 case Bytecodes::_f2d: tos_out = dtos; break; 1822 default : ShouldNotReachHere(); 1823 } 1824 transition(tos_in, tos_out); 1825 } 1826 #endif // ASSERT 1827 1828 // Conversion 1829 // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation) 1830 switch (bytecode()) { 1831 case Bytecodes::i2l: 1832 __ extend_sign(rdx, rax); 1833 break; 1834 case Bytecodes::i2f: 1835 if (UseSSE >= 1) { 1836 __ cvtsi2ssl(xmm0, rax); 1837 } else { 1838 __ push(rax); // store int on tos 1839 __ fild_s(at_rsp()); // load int to ST0 1840 __ f2ieee(); // truncate to float size 1841 __ pop(rcx); // adjust rsp 1842 } 1843 break; 1844 case Bytecodes::i2d: 1845 if (UseSSE >= 2) { 1846 __ cvtsi2sdl(xmm0, rax); 1847 } else { 1848 __ push(rax); // add one slot for d2ieee() 1849 __ push(rax); // store int on tos 1850 __ fild_s(at_rsp()); // load int to ST0 1851 __ d2ieee(); // truncate to double size 1852 __ pop(rcx); // adjust rsp 1853 __ pop(rcx); 1854 } 1855 break; 1856 case Bytecodes::i2b: 1857 __ shll(rax, 24); // truncate upper 24 bits 1858 __ sarl(rax, 24); // and sign-extend byte 1859 LP64_ONLY( movsbl(rax, rax)); 1860 break; 1861 case Bytecodes::i2c: 1862 __ andl(rax, 0xFFFF); // truncate upper 16 bits 1863 LP64_ONLY( movzwl(rax, rax)); 1864 break; 1865 case Bytecodes::i2s: 1866 __ shll(rax, 16); // truncate upper 16 bits 1867 __ sarl(rax, 16); // and sign-extend short 1868 LP64_ONLY( movswl(rax, rax)); 1869 break; 1870 case Bytecodes::_l2i: 1871 / nothing to do / 1872 break; 1873 case Bytecodes::_l2f: 1874 // On 64-bit platforms, the cvtsi2ssq instruction is used to convert 1875 // 64-bit long values to floats. On 32-bit platforms it is not possible 1876 // to use that instruction with 64-bit operands, therefore the FPU is 1877 // used to perform the conversion. 1878 __ push(rdx); // store long on tos 1879 __ push(rax); 1880 __ fild_d(at_rsp()); // load long to ST0 1881 __ f2ieee(); // truncate to float size 1882 __ pop(rcx); // adjust rsp 1883 __ pop(rcx); 1884 if (UseSSE >= 1) { 1885 __ push_f(); 1886 __ pop_f(xmm0); 1887 } 1888 break; 1889 case Bytecodes::_l2d: 1890 // On 32-bit platforms the FPU is used for conversion because on 1891 // 32-bit platforms it is not not possible to use the cvtsi2sdq 1892 // instruction with 64-bit operands. 1893 __ push(rdx); // store long on tos 1894 __ push(rax); 1895 __ fild_d(at_rsp()); // load long to ST0 1896 __ d2ieee(); // truncate to double size 1897 __ pop(rcx); // adjust rsp 1898 __ pop(rcx); 1899 if (UseSSE >= 2) { 1900 __ push_d(); 1901 __ pop_d(xmm0); 1902 } 1903 break; 1904 case Bytecodes::_f2i: 1905 // SharedRuntime::f2i does not differentiate between sNaNs and qNaNs 1906 // as it returns 0 for any NaN. 1907 if (UseSSE >= 1) { 1908 __ push_f(xmm0); 1909 } else { 1910 __ push(rcx); // reserve space for argument 1911 __ fstp_s(at_rsp()); // pass float argument on stack 1912 } 1913 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1); 1914 break; 1915 case Bytecodes::_f2l: 1916 // SharedRuntime::f2l does not differentiate between sNaNs and qNaNs 1917 // as it returns 0 for any NaN. 1918 if (UseSSE >= 1) { 1919 __ push_f(xmm0); 1920 } else { 1921 __ push(rcx); // reserve space for argument 1922 __ fstp_s(at_rsp()); // pass float argument on stack 1923 } 1924 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1); 1925 break; 1926 case Bytecodes::_f2d: 1927 if (UseSSE < 1) { 1928 /* nothing to do */ 1929 } else if (UseSSE == 1) { 1930 __ push_f(xmm0); 1931 __ pop_f(); 1932 } else { // UseSSE >= 2 1933 __ cvtss2sd(xmm0, xmm0); 1934 } 1935 break; 1936 case Bytecodes::_d2i: 1937 if (UseSSE >= 2) { 1938 __ push_d(xmm0); 1939 } else { 1940 __ push(rcx); // reserve space for argument 1941 __ push(rcx); 1942 __ fstp_d(at_rsp()); // pass double argument on stack 1943 } 1944 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2); 1945 break; 1946 case Bytecodes::_d2l: 1947 if (UseSSE >= 2) { 1948 __ push_d(xmm0); 1949 } else { 1950 __ push(rcx); // reserve space for argument 1951 __ push(rcx); 1952 __ fstp_d(at_rsp()); // pass double argument on stack 1953 } 1954 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2); 1955 break; 1956 case Bytecodes::_d2f: 1957 if (UseSSE <= 1) { 1958 __ push(rcx); // reserve space for f2ieee() 1959 __ f2ieee(); // truncate to float size 1960 __ pop(rcx); // adjust rsp 1961 if (UseSSE == 1) { 1962 // The cvtsd2ss instruction is not available if UseSSE==1, therefore 1963 // the conversion is performed using the FPU in this case. 1964 __ push_f(); 1965 __ pop_f(xmm0); 1966 } 1967 } else { // UseSSE >= 2 1968 __ cvtsd2ss(xmm0, xmm0); 1969 } 1970 break; 1971 default : 1972 ShouldNotReachHere(); 1973 } 1974 #endif 1975 } 1976 1977 void TemplateTable::lcmp() { 1978 transition(ltos, itos); 1979 #ifdef _LP64 1980 Label done; 1981 __ pop_l(rdx); 1982 __ cmpq(rdx, rax); 1983 __ movl(rax, -1); 1984 __ jccb(Assembler::less, done); 1985 __ setb(Assembler::notEqual, rax); 1986 __ movzbl(rax, rax); 1987 __ bind(done); 1988 #else 1989 1990 // y = rdx:rax 1991 __ pop_l(rbx, rcx); // get x = rcx:rbx 1992 __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y) 1993 __ mov(rax, rcx); 1994 #endif 1995 } 1996 1997 void TemplateTable::float_cmp(bool is_float, int unordered_result) { 1998 if ((is_float && UseSSE >= 1) || 1999 (!is_float && UseSSE >= 2)) { 2000 Label done; 2001 if (is_float) { 2002 // XXX get rid of pop here, use ... reg, mem32 2003 __ pop_f(xmm1); 2004 __ ucomiss(xmm1, xmm0); 2005 } else { 2006 // XXX get rid of pop here, use ... reg, mem64 2007 __ pop_d(xmm1); 2008 __ ucomisd(xmm1, xmm0); 2009 } 2010 if (unordered_result < 0) { 2011 __ movl(rax, -1); 2012 __ jccb(Assembler::parity, done); 2013 __ jccb(Assembler::below, done); 2014 __ setb(Assembler::notEqual, rdx); 2015 __ movzbl(rax, rdx); 2016 } else { 2017 __ movl(rax, 1); 2018 __ jccb(Assembler::parity, done); 2019 __ jccb(Assembler::above, done); 2020 __ movl(rax, 0); 2021 __ jccb(Assembler::equal, done); 2022 __ decrementl(rax); 2023 } 2024 __ bind(done); 2025 } else { 2026 #ifdef _LP64 2027 ShouldNotReachHere(); 2028 #else 2029 if (is_float) { 2030 __ fld_s(at_rsp()); 2031 } else { 2032 __ fld_d(at_rsp()); 2033 __ pop(rdx); 2034 } 2035 __ pop(rcx); 2036 __ fcmp2int(rax, unordered_result < 0); 2037 #endif // _LP64 2038 } 2039 } 2040 2041 void TemplateTable::branch(bool is_jsr, bool is_wide) { 2042 __ get_method(rcx); // rcx holds method 2043 __ profile_taken_branch(rax, rbx); // rax holds updated MDP, rbx 2044 // holds bumped taken count 2045 2046 const ByteSize be_offset = MethodCounters::backedge_counter_offset() + 2047 InvocationCounter::counter_offset(); 2048 const ByteSize inv_offset = MethodCounters::invocation_counter_offset() + 2049 InvocationCounter::counter_offset(); 2050 2051 // Load up edx with the branch displacement 2052 if (is_wide) { 2053 __ movl(rdx, at_bcp(1)); 2054 } else { 2055 __ load_signed_short(rdx, at_bcp(1)); 2056 } 2057 __ bswapl(rdx); 2058 2059 if (!is_wide) { 2060 __ sarl(rdx, 16); 2061 } 2062 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2063 2064 // Handle all the JSR stuff here, then exit. 2065 // It's much shorter and cleaner than intermingling with the non-JSR 2066 // normal-branch stuff occurring below. 2067 if (is_jsr) { 2068 // Pre-load the next target bytecode into rbx 2069 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1, 0)); 2070 2071 // compute return address as bci in rax 2072 __ lea(rax, at_bcp((is_wide ? 5 : 3) - 2073 in_bytes(ConstMethod::codes_offset()))); 2074 __ subptr(rax, Address(rcx, Method::const_offset())); 2075 // Adjust the bcp in r13 by the displacement in rdx 2076 __ addptr(rbcp, rdx); 2077 // jsr returns atos that is not an oop 2078 __ push_i(rax); 2079 __ dispatch_only(vtos); 2080 return; 2081 } 2082 2083 // Normal (non-jsr) branch handling 2084 2085 // Adjust the bcp in r13 by the displacement in rdx 2086 __ addptr(rbcp, rdx); 2087 2088 assert(UseLoopCounter || !UseOnStackReplacement, 2089 "on-stack-replacement requires loop counters"); 2090 Label backedge_counter_overflow; 2091 Label profile_method; 2092 Label dispatch; 2093 if (UseLoopCounter) { 2094 // increment backedge counter for backward branches 2095 // rax: MDO 2096 // rbx: MDO bumped taken-count 2097 // rcx: method 2098 // rdx: target offset 2099 // r13: target bcp 2100 // r14: locals pointer 2101 __ testl(rdx, rdx); // check if forward or backward branch 2102 __ jcc(Assembler::positive, dispatch); // count only if backward branch 2103 2104 // check if MethodCounters exists 2105 Label has_counters; 2106 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2107 __ testptr(rax, rax); 2108 __ jcc(Assembler::notZero, has_counters); 2109 __ push(rdx); 2110 __ push(rcx); 2111 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters), 2112 rcx); 2113 __ pop(rcx); 2114 __ pop(rdx); 2115 __ movptr(rax, Address(rcx, Method::method_counters_offset())); 2116 __ testptr(rax, rax); 2117 __ jcc(Assembler::zero, dispatch); 2118 __ bind(has_counters); 2119 2120 if (TieredCompilation) { 2121 Label no_mdo; 2122 int increment = InvocationCounter::count_increment; 2123 if (ProfileInterpreter) { 2124 // Are we profiling? 2125 __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset()))); 2126 __ testptr(rbx, rbx); 2127 __ jccb(Assembler::zero, no_mdo); 2128 // Increment the MDO backedge counter 2129 const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) + 2130 in_bytes(InvocationCounter::counter_offset())); 2131 const Address mask(rbx, in_bytes(MethodData::backedge_mask_offset())); 2132 __ increment_mask_and_jump(mdo_backedge_counter, increment, mask, 2133 rax, false, Assembler::zero, &backedge_counter_overflow); 2134 __ jmp(dispatch); 2135 } 2136 __ bind(no_mdo); 2137 // Increment backedge counter in MethodCounters* 2138 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2139 const Address mask(rcx, in_bytes(MethodCounters::backedge_mask_offset())); 2140 __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask, 2141 rax, false, Assembler::zero, &backedge_counter_overflow); 2142 } else { // not TieredCompilation 2143 // increment counter 2144 __ movptr(rcx, Address(rcx, Method::method_counters_offset())); 2145 __ movl(rax, Address(rcx, be_offset)); // load backedge counter 2146 __ incrementl(rax, InvocationCounter::count_increment); // increment counter 2147 __ movl(Address(rcx, be_offset), rax); // store counter 2148 2149 __ movl(rax, Address(rcx, inv_offset)); // load invocation counter 2150 2151 __ andl(rax, InvocationCounter::count_mask_value); // and the status bits 2152 __ addl(rax, Address(rcx, be_offset)); // add both counters 2153 2154 if (ProfileInterpreter) { 2155 // Test to see if we should create a method data oop 2156 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_profile_limit_offset()))); 2157 __ jcc(Assembler::less, dispatch); 2158 2159 // if no method data exists, go to profile method 2160 __ test_method_data_pointer(rax, profile_method); 2161 2162 if (UseOnStackReplacement) { 2163 // check for overflow against rbx which is the MDO taken count 2164 __ cmp32(rbx, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2165 __ jcc(Assembler::below, dispatch); 2166 2167 // When ProfileInterpreter is on, the backedge_count comes 2168 // from the MethodData*, which value does not get reset on 2169 // the call to frequency_counter_overflow(). To avoid 2170 // excessive calls to the overflow routine while the method is 2171 // being compiled, add a second test to make sure the overflow 2172 // function is called only once every overflow_frequency. 2173 const int overflow_frequency = 1024; 2174 __ andl(rbx, overflow_frequency - 1); 2175 __ jcc(Assembler::zero, backedge_counter_overflow); 2176 2177 } 2178 } else { 2179 if (UseOnStackReplacement) { 2180 // check for overflow against rax, which is the sum of the 2181 // counters 2182 __ cmp32(rax, Address(rcx, in_bytes(MethodCounters::interpreter_backward_branch_limit_offset()))); 2183 __ jcc(Assembler::aboveEqual, backedge_counter_overflow); 2184 2185 } 2186 } 2187 } 2188 __ bind(dispatch); 2189 } 2190 2191 // Pre-load the next target bytecode into rbx 2192 __ load_unsigned_byte(rbx, Address(rbcp, 0)); 2193 2194 // continue with the bytecode @ target 2195 // rax: return bci for jsr's, unused otherwise 2196 // rbx: target bytecode 2197 // r13: target bcp 2198 __ dispatch_only(vtos); 2199 2200 if (UseLoopCounter) { 2201 if (ProfileInterpreter) { 2202 // Out-of-line code to allocate method data oop. 2203 __ bind(profile_method); 2204 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method)); 2205 __ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode 2206 __ set_method_data_pointer_for_bcp(); 2207 __ jmp(dispatch); 2208 } 2209 2210 if (UseOnStackReplacement) { 2211 // invocation counter overflow 2212 __ bind(backedge_counter_overflow); 2213 __ negptr(rdx); 2214 __ addptr(rdx, rbcp); // branch bcp 2215 // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp) 2216 __ call_VM(noreg, 2217 CAST_FROM_FN_PTR(address, 2218 InterpreterRuntime::frequency_counter_overflow), 2219 rdx); 2220 __ load_unsigned_byte(rbx, Address(rbcp, 0)); // restore target bytecode 2221 2222 // rax: osr nmethod (osr ok) or NULL (osr not possible) 2223 // rbx: target bytecode 2224 // rdx: scratch 2225 // r14: locals pointer 2226 // r13: bcp 2227 __ testptr(rax, rax); // test result 2228 __ jcc(Assembler::zero, dispatch); // no osr if null 2229 // nmethod may have been invalidated (VM may block upon call_VM return) 2230 __ cmpb(Address(rax, nmethod::state_offset()), nmethod::in_use); 2231 __ jcc(Assembler::notEqual, dispatch); 2232 2233 // We have the address of an on stack replacement routine in rax 2234 // We need to prepare to execute the OSR method. First we must 2235 // migrate the locals and monitors off of the stack. 2236 2237 LP64_ONLY(__ mov(r13, rax)); // save the nmethod 2238 NOT_LP64(__ mov(rbx, rax)); // save the nmethod 2239 NOT_LP64(__ get_thread(rcx)); 2240 2241 call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin)); 2242 2243 // rax is OSR buffer, move it to expected parameter location 2244 LP64_ONLY(__ mov(j_rarg0, rax)); 2245 NOT_LP64(__ mov(rcx, rax)); 2246 // We use j_rarg definitions here so that registers don't conflict as parameter 2247 // registers change across platforms as we are in the midst of a calling 2248 // sequence to the OSR nmethod and we don't want collision. These are NOT parameters. 2249 2250 const Register retaddr = LP64_ONLY(j_rarg2) NOT_LP64(rdi); 2251 const Register sender_sp = LP64_ONLY(j_rarg1) NOT_LP64(rdx); 2252 2253 2254 // pop the interpreter frame 2255 __ movptr(sender_sp, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp 2256 __ leave(); // remove frame anchor 2257 __ pop(retaddr); // get return address 2258 __ mov(rsp, sender_sp); // set sp to sender sp 2259 // Ensure compiled code always sees stack at proper alignment 2260 __ andptr(rsp, -(StackAlignmentInBytes)); 2261 2262 // unlike x86 we need no specialized return from compiled code 2263 // to the interpreter or the call stub. 2264 2265 // push the return address 2266 __ push(retaddr); 2267 2268 // and begin the OSR nmethod 2269 LP64_ONLY(__ jmp(Address(r13, nmethod::osr_entry_point_offset()))); 2270 NOT_LP64(__ jmp(Address(rbx, nmethod::osr_entry_point_offset()))); 2271 } 2272 } 2273 } 2274 2275 void TemplateTable::if_0cmp(Condition cc) { 2276 transition(itos, vtos); 2277 // assume branch is more often taken than not (loops use backward branches) 2278 Label not_taken; 2279 __ testl(rax, rax); 2280 __ jcc(j_not(cc), not_taken); 2281 branch(false, false); 2282 __ bind(not_taken); 2283 __ profile_not_taken_branch(rax); 2284 } 2285 2286 void TemplateTable::if_icmp(Condition cc) { 2287 transition(itos, vtos); 2288 // assume branch is more often taken than not (loops use backward branches) 2289 Label not_taken; 2290 __ pop_i(rdx); 2291 __ cmpl(rdx, rax); 2292 __ jcc(j_not(cc), not_taken); 2293 branch(false, false); 2294 __ bind(not_taken); 2295 __ profile_not_taken_branch(rax); 2296 } 2297 2298 void TemplateTable::if_nullcmp(Condition cc) { 2299 transition(atos, vtos); 2300 // assume branch is more often taken than not (loops use backward branches) 2301 Label not_taken; 2302 __ testptr(rax, rax); 2303 __ jcc(j_not(cc), not_taken); 2304 branch(false, false); 2305 __ bind(not_taken); 2306 __ profile_not_taken_branch(rax); 2307 } 2308 2309 void TemplateTable::if_acmp(Condition cc) { 2310 transition(atos, vtos); 2311 // assume branch is more often taken than not (loops use backward branches) 2312 Label not_taken; 2313 __ pop_ptr(rdx); 2314 __ cmpptr(rdx, rax); 2315 __ jcc(j_not(cc), not_taken); 2316 branch(false, false); 2317 __ bind(not_taken); 2318 __ profile_not_taken_branch(rax); 2319 } 2320 2321 void TemplateTable::ret() { 2322 transition(vtos, vtos); 2323 locals_index(rbx); 2324 LP64_ONLY(__ movslq(rbx, iaddress(rbx))); // get return bci, compute return bcp 2325 NOT_LP64(__ movptr(rbx, iaddress(rbx))); 2326 __ profile_ret(rbx, rcx); 2327 __ get_method(rax); 2328 __ movptr(rbcp, Address(rax, Method::const_offset())); 2329 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, 2330 ConstMethod::codes_offset())); 2331 __ dispatch_next(vtos); 2332 } 2333 2334 void TemplateTable::wide_ret() { 2335 transition(vtos, vtos); 2336 locals_index_wide(rbx); 2337 __ movptr(rbx, aaddress(rbx)); // get return bci, compute return bcp 2338 __ profile_ret(rbx, rcx); 2339 __ get_method(rax); 2340 __ movptr(rbcp, Address(rax, Method::const_offset())); 2341 __ lea(rbcp, Address(rbcp, rbx, Address::times_1, ConstMethod::codes_offset())); 2342 __ dispatch_next(vtos); 2343 } 2344 2345 void TemplateTable::tableswitch() { 2346 Label default_case, continue_execution; 2347 transition(itos, vtos); 2348 2349 // align r13/rsi 2350 __ lea(rbx, at_bcp(BytesPerInt)); 2351 __ andptr(rbx, -BytesPerInt); 2352 // load lo & hi 2353 __ movl(rcx, Address(rbx, BytesPerInt)); 2354 __ movl(rdx, Address(rbx, 2 * BytesPerInt)); 2355 __ bswapl(rcx); 2356 __ bswapl(rdx); 2357 // check against lo & hi 2358 __ cmpl(rax, rcx); 2359 __ jcc(Assembler::less, default_case); 2360 __ cmpl(rax, rdx); 2361 __ jcc(Assembler::greater, default_case); 2362 // lookup dispatch offset 2363 __ subl(rax, rcx); 2364 __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt)); 2365 __ profile_switch_case(rax, rbx, rcx); 2366 // continue execution 2367 __ bind(continue_execution); 2368 __ bswapl(rdx); 2369 LP64_ONLY(__ movl2ptr(rdx, rdx)); 2370 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2371 __ addptr(rbcp, rdx); 2372 __ dispatch_only(vtos); 2373 // handle default 2374 __ bind(default_case); 2375 __ profile_switch_default(rax); 2376 __ movl(rdx, Address(rbx, 0)); 2377 __ jmp(continue_execution); 2378 } 2379 2380 void TemplateTable::lookupswitch() { 2381 transition(itos, itos); 2382 __ stop("lookupswitch bytecode should have been rewritten"); 2383 } 2384 2385 void TemplateTable::fast_linearswitch() { 2386 transition(itos, vtos); 2387 Label loop_entry, loop, found, continue_execution; 2388 // bswap rax so we can avoid bswapping the table entries 2389 __ bswapl(rax); 2390 // align r13 2391 __ lea(rbx, at_bcp(BytesPerInt)); // btw: should be able to get rid of 2392 // this instruction (change offsets 2393 // below) 2394 __ andptr(rbx, -BytesPerInt); 2395 // set counter 2396 __ movl(rcx, Address(rbx, BytesPerInt)); 2397 __ bswapl(rcx); 2398 __ jmpb(loop_entry); 2399 // table search 2400 __ bind(loop); 2401 __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * BytesPerInt)); 2402 __ jcc(Assembler::equal, found); 2403 __ bind(loop_entry); 2404 __ decrementl(rcx); 2405 __ jcc(Assembler::greaterEqual, loop); 2406 // default case 2407 __ profile_switch_default(rax); 2408 __ movl(rdx, Address(rbx, 0)); 2409 __ jmp(continue_execution); 2410 // entry found -> get offset 2411 __ bind(found); 2412 __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * BytesPerInt)); 2413 __ profile_switch_case(rcx, rax, rbx); 2414 // continue execution 2415 __ bind(continue_execution); 2416 __ bswapl(rdx); 2417 __ movl2ptr(rdx, rdx); 2418 __ load_unsigned_byte(rbx, Address(rbcp, rdx, Address::times_1)); 2419 __ addptr(rbcp, rdx); 2420 __ dispatch_only(vtos); 2421 } 2422 2423 void TemplateTable::fast_binaryswitch() { 2424 transition(itos, vtos); 2425 // Implementation using the following core algorithm: 2426 // 2427 // int binary_search(int key, LookupswitchPair array, int n) { 2428 // // Binary search according to "Methodik des Programmierens" by 2429 // // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985. 2430 // int i = 0; 2431 // int j = n; 2432 // while (i+1 < j) { 2433 // // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q) 2434 // // with Q: for all i: 0 <= i < n: key < a[i] 2435 // // where a stands for the array and assuming that the (inexisting) 2436 // // element a[n] is infinitely big. 2437 // int h = (i + j) >> 1; 2438 // // i < h < j 2439 // if (key < array[h].fast_match()) { 2440 // j = h; 2441 // } else { 2442 // i = h; 2443 // } 2444 // } 2445 // // R: a[i] <= key < a[i+1] or Q 2446 // // (i.e., if key is within array, i is the correct index) 2447 // return i; 2448 // } 2449 2450 // Register allocation 2451 const Register key = rax; // already set (tosca) 2452 const Register array = rbx; 2453 const Register i = rcx; 2454 const Register j = rdx; 2455 const Register h = rdi; 2456 const Register temp = rsi; 2457 2458 // Find array start 2459 NOT_LP64(__ save_bcp()); 2460 2461 __ lea(array, at_bcp(3 * BytesPerInt)); // btw: should be able to 2462 // get rid of this 2463 // instruction (change 2464 // offsets below) 2465 __ andptr(array, -BytesPerInt); 2466 2467 // Initialize i & j 2468 __ xorl(i, i); // i = 0; 2469 __ movl(j, Address(array, -BytesPerInt)); // j = length(array); 2470 2471 // Convert j into native byteordering 2472 __ bswapl(j); 2473 2474 // And start 2475 Label entry; 2476 __ jmp(entry); 2477 2478 // binary search loop 2479 { 2480 Label loop; 2481 __ bind(loop); 2482 // int h = (i + j) >> 1; 2483 __ leal(h, Address(i, j, Address::times_1)); // h = i + j; 2484 __ sarl(h, 1); // h = (i + j) >> 1; 2485 // if (key < array[h].fast_match()) { 2486 // j = h; 2487 // } else { 2488 // i = h; 2489 // } 2490 // Convert array[h].match to native byte-ordering before compare 2491 __ movl(temp, Address(array, h, Address::times_8)); 2492 __ bswapl(temp); 2493 __ cmpl(key, temp); 2494 // j = h if (key < array[h].fast_match()) 2495 __ cmov32(Assembler::less, j, h); 2496 // i = h if (key >= array[h].fast_match()) 2497 __ cmov32(Assembler::greaterEqual, i, h); 2498 // while (i+1 < j) 2499 __ bind(entry); 2500 __ leal(h, Address(i, 1)); // i+1 2501 __ cmpl(h, j); // i+1 < j 2502 __ jcc(Assembler::less, loop); 2503 } 2504 2505 // end of binary search, result index is i (must check again!) 2506 Label default_case; 2507 // Convert array[i].match to native byte-ordering before compare 2508 __ movl(temp, Address(array, i, Address::times_8)); 2509 __ bswapl(temp); 2510 __ cmpl(key, temp); 2511 __ jcc(Assembler::notEqual, default_case); 2512 2513 // entry found -> j = offset 2514 __ movl(j , Address(array, i, Address::times_8, BytesPerInt)); 2515 __ profile_switch_case(i, key, array); 2516 __ bswapl(j); 2517 LP64_ONLY(__ movslq(j, j)); 2518 2519 NOT_LP64(__ restore_bcp()); 2520 NOT_LP64(__ restore_locals()); // restore rdi 2521 2522 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2523 __ addptr(rbcp, j); 2524 __ dispatch_only(vtos); 2525 2526 // default case -> j = default offset 2527 __ bind(default_case); 2528 __ profile_switch_default(i); 2529 __ movl(j, Address(array, -2 * BytesPerInt)); 2530 __ bswapl(j); 2531 LP64_ONLY(__ movslq(j, j)); 2532 2533 NOT_LP64(__ restore_bcp()); 2534 NOT_LP64(__ restore_locals()); 2535 2536 __ load_unsigned_byte(rbx, Address(rbcp, j, Address::times_1)); 2537 __ addptr(rbcp, j); 2538 __ dispatch_only(vtos); 2539 } 2540 2541 void TemplateTable::_return(TosState state) { 2542 transition(state, state); 2543 2544 Register robj = LP64_ONLY(c_rarg1) NOT_LP64(rax); 2545 2546 assert(_desc->calls_vm(), 2547 "inconsistent calls_vm information"); // call in remove_activation 2548 2549 if (_desc->bytecode() == Bytecodes::_return_register_finalizer) { 2550 assert(state == vtos, "only valid state"); 2551 __ movptr(robj, aaddress(0)); 2552 __ load_klass(rdi, robj); 2553 __ movl(rdi, Address(rdi, Klass::access_flags_offset())); 2554 __ testl(rdi, JVM_ACC_HAS_FINALIZER); 2555 Label skip_register_finalizer; 2556 __ jcc(Assembler::zero, skip_register_finalizer); 2557 2558 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), robj); 2559 2560 __ bind(skip_register_finalizer); 2561 } 2562 2563 __ remove_activation(state, rbcp); 2564 __ jmp(rbcp); 2565 } 2566 2567 // ---------------------------------------------------------------------------- 2568 // Volatile variables demand their effects be made known to all CPU's 2569 // in order. Store buffers on most chips allow reads & writes to 2570 // reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode 2571 // without some kind of memory barrier (i.e., it's not sufficient that 2572 // the interpreter does not reorder volatile references, the hardware 2573 // also must not reorder them). 2574 // 2575 // According to the new Java Memory Model (JMM): 2576 // (1) All volatiles are serialized wrt to each other. ALSO reads & 2577 // writes act as aquire & release, so: 2578 // (2) A read cannot let unrelated NON-volatile memory refs that 2579 // happen after the read float up to before the read. It's OK for 2580 // non-volatile memory refs that happen before the volatile read to 2581 // float down below it. 2582 // (3) Similar a volatile write cannot let unrelated NON-volatile 2583 // memory refs that happen BEFORE the write float down to after the 2584 // write. It's OK for non-volatile memory refs that happen after the 2585 // volatile write to float up before it. 2586 // 2587 // We only put in barriers around volatile refs (they are expensive), 2588 // not between memory refs (that would require us to track the 2589 // flavor of the previous memory refs). Requirements (2) and (3) 2590 // require some barriers before volatile stores and after volatile 2591 // loads. These nearly cover requirement (1) but miss the 2592 // volatile-store-volatile-load case. This final case is placed after 2593 // volatile-stores although it could just as well go before 2594 // volatile-loads. 2595 2596 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) { 2597 // Helper function to insert a is-volatile test and memory barrier 2598 if(!os::is_MP()) return; // Not needed on single CPU 2599 __ membar(order_constraint); 2600 } 2601 2602 void TemplateTable::resolve_cache_and_index(int byte_no, 2603 Register Rcache, 2604 Register index, 2605 size_t index_size) { 2606 const Register temp = rbx; 2607 assert_different_registers(Rcache, index, temp); 2608 2609 Label resolved; 2610 2611 Bytecodes::Code code = bytecode(); 2612 switch (code) { 2613 case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break; 2614 case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break; 2615 } 2616 2617 assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range"); 2618 __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size); 2619 __ cmpl(temp, code); // have we resolved this bytecode? 2620 __ jcc(Assembler::equal, resolved); 2621 2622 // resolve first time through 2623 address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache); 2624 __ movl(temp, code); 2625 __ call_VM(noreg, entry, temp); 2626 // Update registers with resolved info 2627 __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size); 2628 __ bind(resolved); 2629 } 2630 2631 // The cache and index registers must be set before call 2632 void TemplateTable::load_field_cp_cache_entry(Register obj, 2633 Register cache, 2634 Register index, 2635 Register off, 2636 Register flags, 2637 bool is_static = false) { 2638 assert_different_registers(cache, index, flags, off); 2639 2640 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2641 // Field offset 2642 __ movptr(off, Address(cache, index, Address::times_ptr, 2643 in_bytes(cp_base_offset + 2644 ConstantPoolCacheEntry::f2_offset()))); 2645 // Flags 2646 __ movl(flags, Address(cache, index, Address::times_ptr, 2647 in_bytes(cp_base_offset + 2648 ConstantPoolCacheEntry::flags_offset()))); 2649 2650 // klass overwrite register 2651 if (is_static) { 2652 __ movptr(obj, Address(cache, index, Address::times_ptr, 2653 in_bytes(cp_base_offset + 2654 ConstantPoolCacheEntry::f1_offset()))); 2655 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 2656 __ movptr(obj, Address(obj, mirror_offset)); 2657 } 2658 } 2659 2660 void TemplateTable::load_invoke_cp_cache_entry(int byte_no, 2661 Register method, 2662 Register itable_index, 2663 Register flags, 2664 bool is_invokevirtual, 2665 bool is_invokevfinal, /unused/ 2666 bool is_invokedynamic) { 2667 // setup registers 2668 const Register cache = rcx; 2669 const Register index = rdx; 2670 assert_different_registers(method, flags); 2671 assert_different_registers(method, cache, index); 2672 assert_different_registers(itable_index, flags); 2673 assert_different_registers(itable_index, cache, index); 2674 // determine constant pool cache field offsets 2675 assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant"); 2676 const int method_offset = in_bytes( 2677 ConstantPoolCache::base_offset() + 2678 ((byte_no == f2_byte) 2679 ? ConstantPoolCacheEntry::f2_offset() 2680 : ConstantPoolCacheEntry::f1_offset())); 2681 const int flags_offset = in_bytes(ConstantPoolCache::base_offset() + 2682 ConstantPoolCacheEntry::flags_offset()); 2683 // access constant pool cache fields 2684 const int index_offset = in_bytes(ConstantPoolCache::base_offset() + 2685 ConstantPoolCacheEntry::f2_offset()); 2686 2687 size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2)); 2688 resolve_cache_and_index(byte_no, cache, index, index_size); 2689 __ movptr(method, Address(cache, index, Address::times_ptr, method_offset)); 2690 2691 if (itable_index != noreg) { 2692 // pick up itable or appendix index from f2 also: 2693 __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset)); 2694 } 2695 __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset)); 2696 } 2697 2698 // The registers cache and index expected to be set before call. 2699 // Correct values of the cache and index registers are preserved. 2700 void TemplateTable::jvmti_post_field_access(Register cache, 2701 Register index, 2702 bool is_static, 2703 bool has_tos) { 2704 if (JvmtiExport::can_post_field_access()) { 2705 // Check to see if a field access watch has been set before we take 2706 // the time to call into the VM. 2707 Label L1; 2708 assert_different_registers(cache, index, rax); 2709 __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 2710 __ testl(rax,rax); 2711 __ jcc(Assembler::zero, L1); 2712 2713 // cache entry pointer 2714 __ addptr(cache, in_bytes(ConstantPoolCache::base_offset())); 2715 __ shll(index, LogBytesPerWord); 2716 __ addptr(cache, index); 2717 if (is_static) { 2718 __ xorptr(rax, rax); // NULL object reference 2719 } else { 2720 __ pop(atos); // Get the object 2721 __ verify_oop(rax); 2722 __ push(atos); // Restore stack state 2723 } 2724 // rax,: object pointer or NULL 2725 // cache: cache entry pointer 2726 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), 2727 rax, cache); 2728 __ get_cache_and_index_at_bcp(cache, index, 1); 2729 __ bind(L1); 2730 } 2731 } 2732 2733 void TemplateTable::pop_and_check_object(Register r) { 2734 __ pop_ptr(r); 2735 __ null_check(r); // for field access must check obj. 2736 __ verify_oop(r); 2737 } 2738 2739 void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2740 transition(vtos, vtos); 2741 2742 const Register cache = rcx; 2743 const Register index = rdx; 2744 const Register obj = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2745 const Register off = rbx; 2746 const Register flags = rax; 2747 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); // uses same reg as obj, so don't mix them 2748 2749 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2750 jvmti_post_field_access(cache, index, is_static, false); 2751 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2752 2753 if (!is_static) pop_and_check_object(obj); 2754 2755 const Address field(obj, off, Address::times_1, 0wordSize); 2756 NOT_LP64(const Address hi(obj, off, Address::times_1, 1wordSize)); 2757 2758 Label Done, notByte, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble; 2759 2760 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 2761 // Make sure we don't need to mask edx after the above shift 2762 assert(btos == 0, "change code, btos != 0"); 2763 2764 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 2765 2766 __ jcc(Assembler::notZero, notByte); 2767 // btos 2768 __ load_signed_byte(rax, field); 2769 __ push(btos); 2770 // Rewrite bytecode to be faster 2771 if (!is_static && rc == may_rewrite) { 2772 patch_bytecode(Bytecodes::_fast_bgetfield, bc, rbx); 2773 } 2774 __ jmp(Done); 2775 2776 __ bind(notByte); 2777 __ cmpl(flags, atos); 2778 __ jcc(Assembler::notEqual, notObj); 2779 // atos 2780 __ load_heap_oop(rax, field); 2781 __ push(atos); 2782 if (!is_static && rc == may_rewrite) { 2783 patch_bytecode(Bytecodes::_fast_agetfield, bc, rbx); 2784 } 2785 __ jmp(Done); 2786 2787 __ bind(notObj); 2788 __ cmpl(flags, itos); 2789 __ jcc(Assembler::notEqual, notInt); 2790 // itos 2791 __ movl(rax, field); 2792 __ push(itos); 2793 // Rewrite bytecode to be faster 2794 if (!is_static && rc == may_rewrite) { 2795 patch_bytecode(Bytecodes::_fast_igetfield, bc, rbx); 2796 } 2797 __ jmp(Done); 2798 2799 __ bind(notInt); 2800 __ cmpl(flags, ctos); 2801 __ jcc(Assembler::notEqual, notChar); 2802 // ctos 2803 __ load_unsigned_short(rax, field); 2804 __ push(ctos); 2805 // Rewrite bytecode to be faster 2806 if (!is_static && rc == may_rewrite) { 2807 patch_bytecode(Bytecodes::_fast_cgetfield, bc, rbx); 2808 } 2809 __ jmp(Done); 2810 2811 __ bind(notChar); 2812 __ cmpl(flags, stos); 2813 __ jcc(Assembler::notEqual, notShort); 2814 // stos 2815 __ load_signed_short(rax, field); 2816 __ push(stos); 2817 // Rewrite bytecode to be faster 2818 if (!is_static && rc == may_rewrite) { 2819 patch_bytecode(Bytecodes::_fast_sgetfield, bc, rbx); 2820 } 2821 __ jmp(Done); 2822 2823 __ bind(notShort); 2824 __ cmpl(flags, ltos); 2825 __ jcc(Assembler::notEqual, notLong); 2826 // ltos 2827 2828 #ifndef _LP64 2829 // Generate code as if volatile. There just aren't enough registers to 2830 // save that information and this code is faster than the test. 2831 __ fild_d(field); // Must load atomically 2832 __ subptr(rsp,2wordSize); // Make space for store 2833 __ fistp_d(Address(rsp,0)); 2834 __ pop(rax); 2835 __ pop(rdx); 2836 #else 2837 __ movq(rax, field); 2838 #endif 2839 2840 __ push(ltos); 2841 // Rewrite bytecode to be faster 2842 LP64_ONLY(if (!is_static && rc == may_rewrite) patch_bytecode(Bytecodes::_fast_lgetfield, bc, rbx)); 2843 __ jmp(Done); 2844 2845 __ bind(notLong); 2846 __ cmpl(flags, ftos); 2847 __ jcc(Assembler::notEqual, notFloat); 2848 // ftos 2849 2850 __ load_float(field); 2851 __ push(ftos); 2852 // Rewrite bytecode to be faster 2853 if (!is_static && rc == may_rewrite) { 2854 patch_bytecode(Bytecodes::_fast_fgetfield, bc, rbx); 2855 } 2856 __ jmp(Done); 2857 2858 __ bind(notFloat); 2859 #ifdef ASSERT 2860 __ cmpl(flags, dtos); 2861 __ jcc(Assembler::notEqual, notDouble); 2862 #endif 2863 // dtos 2864 __ load_double(field); 2865 __ push(dtos); 2866 // Rewrite bytecode to be faster 2867 if (!is_static && rc == may_rewrite) { 2868 patch_bytecode(Bytecodes::fast_dgetfield, bc, rbx); 2869 } 2870 #ifdef ASSERT 2871 __ jmp(Done); 2872 2873 2874 __ bind(notDouble); 2875 __ stop("Bad state"); 2876 #endif 2877 2878 __ bind(Done); 2879 // [jk] not needed currently 2880 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadLoad | 2881 // Assembler::LoadStore)); 2882 } 2883 2884 void TemplateTable::getfield(int byte_no) { 2885 getfield_or_static(byte_no, false); 2886 } 2887 2888 void TemplateTable::nofast_getfield(int byte_no) { 2889 getfield_or_static(byte_no, false, may_not_rewrite); 2890 } 2891 2892 void TemplateTable::getstatic(int byte_no) { 2893 getfield_or_static(byte_no, true); 2894 } 2895 2896 2897 // The registers cache and index expected to be set before call. 2898 // The function may destroy various registers, just not the cache and index registers. 2899 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) { 2900 2901 const Register robj = LP64_ONLY(c_rarg2) NOT_LP64(rax); 2902 const Register RBX = LP64_ONLY(c_rarg1) NOT_LP64(rbx); 2903 const Register RCX = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2904 const Register RDX = LP64_ONLY(rscratch1) NOT_LP64(rdx); 2905 2906 ByteSize cp_base_offset = ConstantPoolCache::base_offset(); 2907 2908 if (JvmtiExport::can_post_field_modification()) { 2909 // Check to see if a field modification watch has been set before 2910 // we take the time to call into the VM. 2911 Label L1; 2912 assert_different_registers(cache, index, rax); 2913 __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 2914 __ testl(rax, rax); 2915 __ jcc(Assembler::zero, L1); 2916 2917 __ get_cache_and_index_at_bcp(robj, RDX, 1); 2918 2919 2920 if (is_static) { 2921 // Life is simple. Null out the object pointer. 2922 __ xorl(RBX, RBX); 2923 2924 } else { 2925 // Life is harder. The stack holds the value on top, followed by 2926 // the object. We don't know the size of the value, though; it 2927 // could be one or two words depending on its type. As a result, 2928 // we must find the type to determine where the object is. 2929 #ifndef LP64 2930 Label two_word, valsize_known; 2931 #endif 2932 __ movl(RCX, Address(robj, RDX, 2933 Address::times_ptr, 2934 in_bytes(cp_base_offset + 2935 ConstantPoolCacheEntry::flags_offset()))); 2936 NOT_LP64( mov(rbx, rsp)); 2937 __ shrl(RCX, ConstantPoolCacheEntry::tos_state_shift); 2938 2939 // Make sure we don't need to mask rcx after the above shift 2940 ConstantPoolCacheEntry::verify_tos_state_shift(); 2941 #ifdef _LP64 2942 __ movptr(c_rarg1, at_tos_p1()); // initially assume a one word jvalue 2943 __ cmpl(c_rarg3, ltos); 2944 __ cmovptr(Assembler::equal, 2945 c_rarg1, at_tos_p2()); // ltos (two word jvalue) 2946 __ cmpl(c_rarg3, dtos); 2947 __ cmovptr(Assembler::equal, 2948 c_rarg1, at_tos_p2()); // dtos (two word jvalue) 2949 #else 2950 __ cmpl(rcx, ltos); 2951 __ jccb(Assembler::equal, two_word); 2952 __ cmpl(rcx, dtos); 2953 __ jccb(Assembler::equal, two_word); 2954 __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos) 2955 __ jmpb(valsize_known); 2956 2957 __ bind(two_word); 2958 __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue 2959 2960 __ bind(valsize_known); 2961 // setup object pointer 2962 __ movptr(rbx, Address(rbx, 0)); 2963 #endif 2964 } 2965 // cache entry pointer 2966 __ addptr(robj, in_bytes(cp_base_offset)); 2967 __ shll(RDX, LogBytesPerWord); 2968 __ addptr(robj, RDX); 2969 // object (tos) 2970 __ mov(RCX, rsp); 2971 // c_rarg1: object pointer set up above (NULL if static) 2972 // c_rarg2: cache entry pointer 2973 // c_rarg3: jvalue object on the stack 2974 __ call_VM(noreg, 2975 CAST_FROM_FN_PTR(address, 2976 InterpreterRuntime::post_field_modification), 2977 RBX, robj, RCX); 2978 __ get_cache_and_index_at_bcp(cache, index, 1); 2979 __ bind(L1); 2980 } 2981 } 2982 2983 void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) { 2984 transition(vtos, vtos); 2985 2986 const Register cache = rcx; 2987 const Register index = rdx; 2988 const Register obj = rcx; 2989 const Register off = rbx; 2990 const Register flags = rax; 2991 const Register bc = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 2992 2993 resolve_cache_and_index(byte_no, cache, index, sizeof(u2)); 2994 jvmti_post_field_mod(cache, index, is_static); 2995 load_field_cp_cache_entry(obj, cache, index, off, flags, is_static); 2996 2997 // [jk] not needed currently 2998 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 2999 // Assembler::StoreStore)); 3000 3001 Label notVolatile, Done; 3002 __ movl(rdx, flags); 3003 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3004 __ andl(rdx, 0x1); 3005 3006 // field addresses 3007 const Address field(obj, off, Address::times_1, 0wordSize); 3008 NOT_LP64( const Address hi(obj, off, Address::times_1, 1wordSize);) 3009 3010 Label notByte, notInt, notShort, notChar, 3011 notLong, notFloat, notObj, notDouble; 3012 3013 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3014 3015 assert(btos == 0, "change code, btos != 0"); 3016 __ andl(flags, ConstantPoolCacheEntry::tos_state_mask); 3017 __ jcc(Assembler::notZero, notByte); 3018 3019 // btos 3020 { 3021 __ pop(btos); 3022 if (!is_static) pop_and_check_object(obj); 3023 __ movb(field, rax); 3024 if (!is_static && rc == may_rewrite) { 3025 patch_bytecode(Bytecodes::_fast_bputfield, bc, rbx, true, byte_no); 3026 } 3027 __ jmp(Done); 3028 } 3029 3030 __ bind(notByte); 3031 __ cmpl(flags, atos); 3032 __ jcc(Assembler::notEqual, notObj); 3033 3034 // atos 3035 { 3036 __ pop(atos); 3037 if (!is_static) pop_and_check_object(obj); 3038 // Store into the field 3039 do_oop_store(_masm, field, rax, _bs->kind(), false); 3040 if (!is_static && rc == may_rewrite) { 3041 patch_bytecode(Bytecodes::_fast_aputfield, bc, rbx, true, byte_no); 3042 } 3043 __ jmp(Done); 3044 } 3045 3046 __ bind(notObj); 3047 __ cmpl(flags, itos); 3048 __ jcc(Assembler::notEqual, notInt); 3049 3050 // itos 3051 { 3052 __ pop(itos); 3053 if (!is_static) pop_and_check_object(obj); 3054 __ movl(field, rax); 3055 if (!is_static && rc == may_rewrite) { 3056 patch_bytecode(Bytecodes::_fast_iputfield, bc, rbx, true, byte_no); 3057 } 3058 __ jmp(Done); 3059 } 3060 3061 __ bind(notInt); 3062 __ cmpl(flags, ctos); 3063 __ jcc(Assembler::notEqual, notChar); 3064 3065 // ctos 3066 { 3067 __ pop(ctos); 3068 if (!is_static) pop_and_check_object(obj); 3069 __ movw(field, rax); 3070 if (!is_static && rc == may_rewrite) { 3071 patch_bytecode(Bytecodes::_fast_cputfield, bc, rbx, true, byte_no); 3072 } 3073 __ jmp(Done); 3074 } 3075 3076 __ bind(notChar); 3077 __ cmpl(flags, stos); 3078 __ jcc(Assembler::notEqual, notShort); 3079 3080 // stos 3081 { 3082 __ pop(stos); 3083 if (!is_static) pop_and_check_object(obj); 3084 __ movw(field, rax); 3085 if (!is_static && rc == may_rewrite) { 3086 patch_bytecode(Bytecodes::_fast_sputfield, bc, rbx, true, byte_no); 3087 } 3088 __ jmp(Done); 3089 } 3090 3091 __ bind(notShort); 3092 __ cmpl(flags, ltos); 3093 __ jcc(Assembler::notEqual, notLong); 3094 3095 // ltos 3096 #ifdef _LP64 3097 { 3098 __ pop(ltos); 3099 if (!is_static) pop_and_check_object(obj); 3100 __ movq(field, rax); 3101 if (!is_static && rc == may_rewrite) { 3102 patch_bytecode(Bytecodes::_fast_lputfield, bc, rbx, true, byte_no); 3103 } 3104 __ jmp(Done); 3105 } 3106 #else 3107 { 3108 Label notVolatileLong; 3109 __ testl(rdx, rdx); 3110 __ jcc(Assembler::zero, notVolatileLong); 3111 3112 __ pop(ltos); // overwrites rdx, do this after testing volatile. 3113 if (!is_static) pop_and_check_object(obj); 3114 3115 // Replace with real volatile test 3116 __ push(rdx); 3117 __ push(rax); // Must update atomically with FIST 3118 __ fild_d(Address(rsp,0)); // So load into FPU register 3119 __ fistp_d(field); // and put into memory atomically 3120 __ addptr(rsp, 2wordSize); 3121 // volatile_barrier(); 3122 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3123 Assembler::StoreStore)); 3124 // Don't rewrite volatile version 3125 __ jmp(notVolatile); 3126 3127 __ bind(notVolatileLong); 3128 3129 __ pop(ltos); // overwrites rdx 3130 if (!is_static) pop_and_check_object(obj); 3131 __ movptr(hi, rdx); 3132 __ movptr(field, rax); 3133 // Don't rewrite to _fast_lputfield for potential volatile case. 3134 __ jmp(notVolatile); 3135 } 3136 #endif // _LP64 3137 3138 __ bind(notLong); 3139 __ cmpl(flags, ftos); 3140 __ jcc(Assembler::notEqual, notFloat); 3141 3142 // ftos 3143 { 3144 __ pop(ftos); 3145 if (!is_static) pop_and_check_object(obj); 3146 __ store_float(field); 3147 if (!is_static && rc == may_rewrite) { 3148 patch_bytecode(Bytecodes::_fast_fputfield, bc, rbx, true, byte_no); 3149 } 3150 __ jmp(Done); 3151 } 3152 3153 __ bind(notFloat); 3154 #ifdef ASSERT 3155 __ cmpl(flags, dtos); 3156 __ jcc(Assembler::notEqual, notDouble); 3157 #endif 3158 3159 // dtos 3160 { 3161 __ pop(dtos); 3162 if (!is_static) pop_and_check_object(obj); 3163 __ store_double(field); 3164 if (!is_static && rc == may_rewrite) { 3165 patch_bytecode(Bytecodes::_fast_dputfield, bc, rbx, true, byte_no); 3166 } 3167 } 3168 3169 #ifdef ASSERT 3170 __ jmp(Done); 3171 3172 __ bind(notDouble); 3173 __ stop("Bad state"); 3174 #endif 3175 3176 __ bind(Done); 3177 3178 // Check for volatile store 3179 __ testl(rdx, rdx); 3180 __ jcc(Assembler::zero, notVolatile); 3181 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3182 Assembler::StoreStore)); 3183 __ bind(notVolatile); 3184 } 3185 3186 void TemplateTable::putfield(int byte_no) { 3187 putfield_or_static(byte_no, false); 3188 } 3189 3190 void TemplateTable::nofast_putfield(int byte_no) { 3191 putfield_or_static(byte_no, false, may_not_rewrite); 3192 } 3193 3194 void TemplateTable::putstatic(int byte_no) { 3195 putfield_or_static(byte_no, true); 3196 } 3197 3198 void TemplateTable::jvmti_post_fast_field_mod() { 3199 3200 const Register scratch = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 3201 3202 if (JvmtiExport::can_post_field_modification()) { 3203 // Check to see if a field modification watch has been set before 3204 // we take the time to call into the VM. 3205 Label L2; 3206 __ mov32(scratch, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr())); 3207 __ testl(scratch, scratch); 3208 __ jcc(Assembler::zero, L2); 3209 __ pop_ptr(rbx); // copy the object pointer from tos 3210 __ verify_oop(rbx); 3211 __ push_ptr(rbx); // put the object pointer back on tos 3212 // Save tos values before call_VM() clobbers them. Since we have 3213 // to do it for every data type, we use the saved values as the 3214 // jvalue object. 3215 switch (bytecode()) { // load values into the jvalue object 3216 case Bytecodes::fast_aputfield: __ push_ptr(rax); break; 3217 case Bytecodes::fast_bputfield: // fall through 3218 case Bytecodes::fast_sputfield: // fall through 3219 case Bytecodes::fast_cputfield: // fall through 3220 case Bytecodes::fast_iputfield: __ push_i(rax); break; 3221 case Bytecodes::fast_dputfield: __ push(dtos); break; 3222 case Bytecodes::fast_fputfield: __ push(ftos); break; 3223 case Bytecodes::fast_lputfield: __ push_l(rax); break; 3224 3225 default: 3226 ShouldNotReachHere(); 3227 } 3228 __ mov(scratch, rsp); // points to jvalue on the stack 3229 // access constant pool cache entry 3230 LP64_ONLY( get_cache_entry_pointer_at_bcp(c_rarg2, rax, 1)); 3231 NOT_LP64( get_cache_entry_pointer_at_bcp(rax, rdx, 1)); 3232 __ verify_oop(rbx); 3233 // rbx: object pointer copied above 3234 // c_rarg2: cache entry pointer 3235 // c_rarg3: jvalue object on the stack 3236 LP64_ONLY( call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, c_rarg2, c_rarg3)); 3237 NOT_LP64( call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx)); 3238 3239 switch (bytecode()) { // restore tos values 3240 case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break; 3241 case Bytecodes::_fast_bputfield: // fall through 3242 case Bytecodes::_fast_sputfield: // fall through 3243 case Bytecodes::_fast_cputfield: // fall through 3244 case Bytecodes::_fast_iputfield: __ pop_i(rax); break; 3245 case Bytecodes::_fast_dputfield: __ pop(dtos); break; 3246 case Bytecodes::_fast_fputfield: __ pop(ftos); break; 3247 case Bytecodes::_fast_lputfield: __ pop_l(rax); break; 3248 } 3249 __ bind(L2); 3250 } 3251 } 3252 3253 void TemplateTable::fast_storefield(TosState state) { 3254 transition(state, vtos); 3255 3256 ByteSize base = ConstantPoolCache::base_offset(); 3257 3258 jvmti_post_fast_field_mod(); 3259 3260 // access constant pool cache 3261 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3262 3263 // test for volatile with rdx but rdx is tos register for lputfield. 3264 __ movl(rdx, Address(rcx, rbx, Address::times_ptr, 3265 in_bytes(base + 3266 ConstantPoolCacheEntry::flags_offset()))); 3267 3268 // replace index with field offset from cache entry 3269 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3270 in_bytes(base + ConstantPoolCacheEntry::f2_offset()))); 3271 3272 // [jk] not needed currently 3273 // volatile_barrier(Assembler::Membar_mask_bits(Assembler::LoadStore | 3274 // Assembler::StoreStore)); 3275 3276 Label notVolatile; 3277 __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3278 __ andl(rdx, 0x1); 3279 3280 // Get object from stack 3281 pop_and_check_object(rcx); 3282 3283 // field address 3284 const Address field(rcx, rbx, Address::times_1); 3285 3286 // access field 3287 switch (bytecode()) { 3288 case Bytecodes::_fast_aputfield: 3289 do_oop_store(masm, field, rax, bs->kind(), false); 3290 break; 3291 case Bytecodes::fast_lputfield: 3292 #ifdef LP64 3293 __ movq(field, rax); 3294 #else 3295 __ stop("should not be rewritten"); 3296 #endif 3297 break; 3298 case Bytecodes::fast_iputfield: 3299 __ movl(field, rax); 3300 break; 3301 case Bytecodes::fast_bputfield: 3302 __ movb(field, rax); 3303 break; 3304 case Bytecodes::fast_sputfield: 3305 // fall through 3306 case Bytecodes::fast_cputfield: 3307 __ movw(field, rax); 3308 break; 3309 case Bytecodes::fast_fputfield: 3310 __ store_float(field); 3311 break; 3312 case Bytecodes::fast_dputfield: 3313 __ store_double(field); 3314 break; 3315 default: 3316 ShouldNotReachHere(); 3317 } 3318 3319 // Check for volatile store 3320 __ testl(rdx, rdx); 3321 __ jcc(Assembler::zero, notVolatile); 3322 volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad | 3323 Assembler::StoreStore)); 3324 __ bind(notVolatile); 3325 } 3326 3327 void TemplateTable::fast_accessfield(TosState state) { 3328 transition(atos, state); 3329 3330 // Do the JVMTI work here to avoid disturbing the register state below 3331 if (JvmtiExport::can_post_field_access()) { 3332 // Check to see if a field access watch has been set before we 3333 // take the time to call into the VM. 3334 Label L1; 3335 __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr())); 3336 __ testl(rcx, rcx); 3337 __ jcc(Assembler::zero, L1); 3338 // access constant pool cache entry 3339 LP64_ONLY( get_cache_entry_pointer_at_bcp(c_rarg2, rcx, 1)); 3340 NOT_LP64( get_cache_entry_pointer_at_bcp(rcx, rdx, 1)); 3341 __ verify_oop(rax); 3342 __ push_ptr(rax); // save object pointer before call_VM() clobbers it 3343 LP64_ONLY( mov(c_rarg1, rax)); 3344 // c_rarg1: object pointer copied above 3345 // c_rarg2: cache entry pointer 3346 LP64_ONLY( call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), c_rarg1, c_rarg2)); 3347 NOT_LP64( call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx)); 3348 __ pop_ptr(rax); // restore object pointer 3349 __ bind(L1); 3350 } 3351 3352 // access constant pool cache 3353 __ get_cache_and_index_at_bcp(rcx, rbx, 1); 3354 // replace index with field offset from cache entry 3355 // [jk] not needed currently 3356 // if (os::is_MP()) { 3357 // __ movl(rdx, Address(rcx, rbx, Address::times_8, 3358 // in_bytes(ConstantPoolCache::base_offset() + 3359 // ConstantPoolCacheEntry::flags_offset()))); 3360 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3361 // __ andl(rdx, 0x1); 3362 // } 3363 __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, 3364 in_bytes(ConstantPoolCache::base_offset() + 3365 ConstantPoolCacheEntry::f2_offset()))); 3366 3367 // rax: object 3368 __ verify_oop(rax); 3369 __ null_check(rax); 3370 Address field(rax, rbx, Address::times_1); 3371 3372 // access field 3373 switch (bytecode()) { 3374 case Bytecodes::_fast_agetfield: 3375 __ load_heap_oop(rax, field); 3376 __ verify_oop(rax); 3377 break; 3378 case Bytecodes::_fast_lgetfield: 3379 #ifdef _LP64 3380 __ movq(rax, field); 3381 #else 3382 __ stop("should not be rewritten"); 3383 #endif 3384 break; 3385 case Bytecodes::_fast_igetfield: 3386 __ movl(rax, field); 3387 break; 3388 case Bytecodes::_fast_bgetfield: 3389 __ movsbl(rax, field); 3390 break; 3391 case Bytecodes::_fast_sgetfield: 3392 __ load_signed_short(rax, field); 3393 break; 3394 case Bytecodes::_fast_cgetfield: 3395 __ load_unsigned_short(rax, field); 3396 break; 3397 case Bytecodes::_fast_fgetfield: 3398 __ load_float(field); 3399 break; 3400 case Bytecodes::_fast_dgetfield: 3401 __ load_double(field); 3402 break; 3403 default: 3404 ShouldNotReachHere(); 3405 } 3406 // [jk] not needed currently 3407 // if (os::is_MP()) { 3408 // Label notVolatile; 3409 // __ testl(rdx, rdx); 3410 // __ jcc(Assembler::zero, notVolatile); 3411 // __ membar(Assembler::LoadLoad); 3412 // __ bind(notVolatile); 3413 //}; 3414 } 3415 3416 void TemplateTable::fast_xaccess(TosState state) { 3417 transition(vtos, state); 3418 3419 // get receiver 3420 __ movptr(rax, aaddress(0)); 3421 // access constant pool cache 3422 __ get_cache_and_index_at_bcp(rcx, rdx, 2); 3423 __ movptr(rbx, 3424 Address(rcx, rdx, Address::times_ptr, 3425 in_bytes(ConstantPoolCache::base_offset() + 3426 ConstantPoolCacheEntry::f2_offset()))); 3427 // make sure exception is reported in correct bcp range (getfield is 3428 // next instruction) 3429 __ increment(rbcp); 3430 __ null_check(rax); 3431 const Address field = Address(rax, rbx, Address::times_1, 0wordSize); 3432 switch (state) { 3433 case itos: 3434 __ movl(rax, field); 3435 break; 3436 case atos: 3437 __ load_heap_oop(rax, field); 3438 __ verify_oop(rax); 3439 break; 3440 case ftos: 3441 __ load_float(field); 3442 break; 3443 default: 3444 ShouldNotReachHere(); 3445 } 3446 3447 // [jk] not needed currently 3448 // if (os::is_MP()) { 3449 // Label notVolatile; 3450 // __ movl(rdx, Address(rcx, rdx, Address::times_8, 3451 // in_bytes(ConstantPoolCache::base_offset() + 3452 // ConstantPoolCacheEntry::flags_offset()))); 3453 // __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift); 3454 // __ testl(rdx, 0x1); 3455 // __ jcc(Assembler::zero, notVolatile); 3456 // __ membar(Assembler::LoadLoad); 3457 // __ bind(notVolatile); 3458 // } 3459 3460 __ decrement(rbcp); 3461 } 3462 3463 //----------------------------------------------------------------------------- 3464 // Calls 3465 3466 void TemplateTable::count_calls(Register method, Register temp) { 3467 // implemented elsewhere 3468 ShouldNotReachHere(); 3469 } 3470 3471 void TemplateTable::prepare_invoke(int byte_no, 3472 Register method, // linked method (or i-klass) 3473 Register index, // itable index, MethodType, etc. 3474 Register recv, // if caller wants to see it 3475 Register flags // if caller wants to test it 3476 ) { 3477 // determine flags 3478 const Bytecodes::Code code = bytecode(); 3479 const bool is_invokeinterface = code == Bytecodes::_invokeinterface; 3480 const bool is_invokedynamic = code == Bytecodes::_invokedynamic; 3481 const bool is_invokehandle = code == Bytecodes::_invokehandle; 3482 const bool is_invokevirtual = code == Bytecodes::_invokevirtual; 3483 const bool is_invokespecial = code == Bytecodes::_invokespecial; 3484 const bool load_receiver = (recv != noreg); 3485 const bool save_flags = (flags != noreg); 3486 assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), ""); 3487 assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal"); 3488 assert(flags == noreg || flags == rdx, ""); 3489 assert(recv == noreg || recv == rcx, ""); 3490 3491 // setup registers & access constant pool cache 3492 if (recv == noreg) recv = rcx; 3493 if (flags == noreg) flags = rdx; 3494 assert_different_registers(method, index, recv, flags); 3495 3496 // save 'interpreter return address' 3497 __ save_bcp(); 3498 3499 load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic); 3500 3501 // maybe push appendix to arguments (just before return address) 3502 if (is_invokedynamic || is_invokehandle) { 3503 Label L_no_push; 3504 __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift)); 3505 __ jcc(Assembler::zero, L_no_push); 3506 // Push the appendix as a trailing parameter. 3507 // This must be done before we get the receiver, 3508 // since the parameter_size includes it. 3509 __ push(rbx); 3510 __ mov(rbx, index); 3511 assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0"); 3512 __ load_resolved_reference_at_index(index, rbx); 3513 __ pop(rbx); 3514 __ push(index); // push appendix (MethodType, CallSite, etc.) 3515 __ bind(L_no_push); 3516 } 3517 3518 // load receiver if needed (after appendix is pushed so parameter size is correct) 3519 // Note: no return address pushed yet 3520 if (load_receiver) { 3521 __ movl(recv, flags); 3522 __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask); 3523 const int no_return_pc_pushed_yet = -1; // argument slot correction before we push return address 3524 const int receiver_is_at_end = -1; // back off one slot to get receiver 3525 Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end); 3526 __ movptr(recv, recv_addr); 3527 __ verify_oop(recv); 3528 } 3529 3530 if (save_flags) { 3531 __ movl(rbcp, flags); 3532 } 3533 3534 // compute return type 3535 __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift); 3536 // Make sure we don't need to mask flags after the above shift 3537 ConstantPoolCacheEntry::verify_tos_state_shift(); 3538 // load return address 3539 { 3540 const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code); 3541 ExternalAddress table(table_addr); 3542 LP64_ONLY(__ lea(rscratch1, table)); 3543 LP64_ONLY(__ movptr(flags, Address(rscratch1, flags, Address::times_ptr))); 3544 NOT_LP64(__ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)))); 3545 } 3546 3547 // push return address 3548 __ push(flags); 3549 3550 // Restore flags value from the constant pool cache, and restore rsi 3551 // for later null checks. r13 is the bytecode pointer 3552 if (save_flags) { 3553 __ movl(flags, rbcp); 3554 __ restore_bcp(); 3555 } 3556 } 3557 3558 void TemplateTable::invokevirtual_helper(Register index, 3559 Register recv, 3560 Register flags) { 3561 // Uses temporary registers rax, rdx 3562 assert_different_registers(index, recv, rax, rdx); 3563 assert(index == rbx, ""); 3564 assert(recv == rcx, ""); 3565 3566 // Test for an invoke of a final method 3567 Label notFinal; 3568 __ movl(rax, flags); 3569 __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift)); 3570 __ jcc(Assembler::zero, notFinal); 3571 3572 const Register method = index; // method must be rbx 3573 assert(method == rbx, 3574 "Method* must be rbx for interpreter calling convention"); 3575 3576 // do the call - the index is actually the method to call 3577 // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method* 3578 3579 // It's final, need a null check here! 3580 __ null_check(recv); 3581 3582 // profile this call 3583 __ profile_final_call(rax); 3584 __ profile_arguments_type(rax, method, rbcp, true); 3585 3586 __ jump_from_interpreted(method, rax); 3587 3588 __ bind(notFinal); 3589 3590 // get receiver klass 3591 __ null_check(recv, oopDesc::klass_offset_in_bytes()); 3592 __ load_klass(rax, recv); 3593 3594 // profile this call 3595 __ profile_virtual_call(rax, rlocals, rdx); 3596 // get target Method* & entry point 3597 __ lookup_virtual_method(rax, index, method); 3598 #if INCLUDE_JVMCI 3599 __ profile_called_method(method, rdx, rbcp); 3600 #endif 3601 3602 __ profile_arguments_type(rdx, method, rbcp, true); 3603 __ jump_from_interpreted(method, rdx); 3604 } 3605 3606 void TemplateTable::invokevirtual(int byte_no) { 3607 transition(vtos, vtos); 3608 assert(byte_no == f2_byte, "use this argument"); 3609 prepare_invoke(byte_no, 3610 rbx, // method or vtable index 3611 noreg, // unused itable index 3612 rcx, rdx); // recv, flags 3613 3614 // rbx: index 3615 // rcx: receiver 3616 // rdx: flags 3617 3618 invokevirtual_helper(rbx, rcx, rdx); 3619 } 3620 3621 void TemplateTable::invokespecial(int byte_no) { 3622 transition(vtos, vtos); 3623 assert(byte_no == f1_byte, "use this argument"); 3624 prepare_invoke(byte_no, rbx, noreg, // get f1 Method* 3625 rcx); // get receiver also for null check 3626 __ verify_oop(rcx); 3627 __ null_check(rcx); 3628 // do the call 3629 __ profile_call(rax); 3630 __ profile_arguments_type(rax, rbx, rbcp, false); 3631 __ jump_from_interpreted(rbx, rax); 3632 } 3633 3634 void TemplateTable::invokestatic(int byte_no) { 3635 transition(vtos, vtos); 3636 assert(byte_no == f1_byte, "use this argument"); 3637 prepare_invoke(byte_no, rbx); // get f1 Method* 3638 // do the call 3639 __ profile_call(rax); 3640 __ profile_arguments_type(rax, rbx, rbcp, false); 3641 __ jump_from_interpreted(rbx, rax); 3642 } 3643 3644 3645 void TemplateTable::fast_invokevfinal(int byte_no) { 3646 transition(vtos, vtos); 3647 assert(byte_no == f2_byte, "use this argument"); 3648 __ stop("fast_invokevfinal not used on x86"); 3649 } 3650 3651 3652 void TemplateTable::invokeinterface(int byte_no) { 3653 transition(vtos, vtos); 3654 assert(byte_no == f1_byte, "use this argument"); 3655 prepare_invoke(byte_no, rax, rbx, // get f1 Klass*, f2 itable index 3656 rcx, rdx); // recv, flags 3657 3658 // rax: interface klass (from f1) 3659 // rbx: itable index (from f2) 3660 // rcx: receiver 3661 // rdx: flags 3662 3663 // Special case of invokeinterface called for virtual method of 3664 // java.lang.Object. See cpCacheOop.cpp for details. 3665 // This code isn't produced by javac, but could be produced by 3666 // another compliant java compiler. 3667 Label notMethod; 3668 __ movl(rlocals, rdx); 3669 __ andl(rlocals, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift)); 3670 3671 __ jcc(Assembler::zero, notMethod); 3672 3673 invokevirtual_helper(rbx, rcx, rdx); 3674 __ bind(notMethod); 3675 3676 // Get receiver klass into rdx - also a null check 3677 __ restore_locals(); // restore r14 3678 __ null_check(rcx, oopDesc::klass_offset_in_bytes()); 3679 __ load_klass(rdx, rcx); 3680 3681 // profile this call 3682 __ profile_virtual_call(rdx, rbcp, rlocals); 3683 3684 Label no_such_interface, no_such_method; 3685 3686 __ lookup_interface_method(// inputs: rec. class, interface, itable index 3687 rdx, rax, rbx, 3688 // outputs: method, scan temp. reg 3689 rbx, rbcp, 3690 no_such_interface); 3691 3692 // rbx: Method* to call 3693 // rcx: receiver 3694 // Check for abstract method error 3695 // Note: This should be done more efficiently via a throw_abstract_method_error 3696 // interpreter entry point and a conditional jump to it in case of a null 3697 // method. 3698 __ testptr(rbx, rbx); 3699 __ jcc(Assembler::zero, no_such_method); 3700 3701 #if INCLUDE_JVMCI 3702 __ profile_called_method(rbx, rbcp, rdx); 3703 #endif 3704 __ profile_arguments_type(rdx, rbx, rbcp, true); 3705 3706 // do the call 3707 // rcx: receiver 3708 // rbx,: Method* 3709 __ jump_from_interpreted(rbx, rdx); 3710 __ should_not_reach_here(); 3711 3712 // exception handling code follows... 3713 // note: must restore interpreter registers to canonical 3714 // state for exception handling to work correctly! 3715 3716 __ bind(no_such_method); 3717 // throw exception 3718 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3719 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3720 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3721 __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError)); 3722 // the call_VM checks for exception, so we should never return here. 3723 __ should_not_reach_here(); 3724 3725 __ bind(no_such_interface); 3726 // throw exception 3727 __ pop(rbx); // pop return address (pushed by prepare_invoke) 3728 __ restore_bcp(); // rbcp must be correct for exception handler (was destroyed) 3729 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 3730 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 3731 InterpreterRuntime::throw_IncompatibleClassChangeError)); 3732 // the call_VM checks for exception, so we should never return here. 3733 __ should_not_reach_here(); 3734 } 3735 3736 void TemplateTable::invokehandle(int byte_no) { 3737 transition(vtos, vtos); 3738 assert(byte_no == f1_byte, "use this argument"); 3739 const Register rbx_method = rbx; 3740 const Register rax_mtype = rax; 3741 const Register rcx_recv = rcx; 3742 const Register rdx_flags = rdx; 3743 3744 prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv); 3745 __ verify_method_ptr(rbx_method); 3746 __ verify_oop(rcx_recv); 3747 __ null_check(rcx_recv); 3748 3749 // rax: MethodType object (from cpool->resolved_references[f1], if necessary) 3750 // rbx: MH.invokeExact_MT method (from f2) 3751 3752 // Note: rax_mtype is already pushed (if necessary) by prepare_invoke 3753 3754 // FIXME: profile the LambdaForm also 3755 __ profile_final_call(rax); 3756 __ profile_arguments_type(rdx, rbx_method, rbcp, true); 3757 3758 __ jump_from_interpreted(rbx_method, rdx); 3759 } 3760 3761 void TemplateTable::invokedynamic(int byte_no) { 3762 transition(vtos, vtos); 3763 assert(byte_no == f1_byte, "use this argument"); 3764 3765 const Register rbx_method = rbx; 3766 const Register rax_callsite = rax; 3767 3768 prepare_invoke(byte_no, rbx_method, rax_callsite); 3769 3770 // rax: CallSite object (from cpool->resolved_references[f1]) 3771 // rbx: MH.linkToCallSite method (from f2) 3772 3773 // Note: rax_callsite is already pushed by prepare_invoke 3774 3775 // %%% should make a type profile for any invokedynamic that takes a ref argument 3776 // profile this call 3777 __ profile_call(rbcp); 3778 __ profile_arguments_type(rdx, rbx_method, rbcp, false); 3779 3780 __ verify_oop(rax_callsite); 3781 3782 __ jump_from_interpreted(rbx_method, rdx); 3783 } 3784 3785 //----------------------------------------------------------------------------- 3786 // Allocation 3787 3788 void TemplateTable::_new() { 3789 transition(vtos, atos); 3790 __ get_unsigned_2_byte_index_at_bcp(rdx, 1); 3791 Label slow_case; 3792 Label slow_case_no_pop; 3793 Label done; 3794 Label initialize_header; 3795 Label initialize_object; // including clearing the fields 3796 Label allocate_shared; 3797 3798 __ get_cpool_and_tags(rcx, rax); 3799 3800 // Make sure the class we're about to instantiate has been resolved. 3801 // This is done before loading InstanceKlass to be consistent with the order 3802 // how Constant Pool is updated (see ConstantPool::klass_at_put) 3803 const int tags_offset = Array::base_offset_in_bytes(); 3804 __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class); 3805 __ jcc(Assembler::notEqual, slow_case_no_pop); 3806 3807 // get InstanceKlass 3808 __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool))); 3809 __ push(rcx); // save the contexts of klass for initializing the header 3810 3811 // make sure klass is initialized & doesn't have finalizer 3812 // make sure klass is fully initialized 3813 __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized); 3814 __ jcc(Assembler::notEqual, slow_case); 3815 3816 // get instance_size in InstanceKlass (scaled to a count of bytes) 3817 __ movl(rdx, Address(rcx, Klass::layout_helper_offset())); 3818 // test to see if it has a finalizer or is malformed in some way 3819 __ testl(rdx, Klass::_lh_instance_slow_path_bit); 3820 __ jcc(Assembler::notZero, slow_case); 3821 3822 // 3823 // Allocate the instance 3824 // 1) Try to allocate in the TLAB 3825 // 2) if fail and the object is large allocate in the shared Eden 3826 // 3) if the above fails (or is not applicable), go to a slow case 3827 // (creates a new TLAB, etc.) 3828 3829 const bool allow_shared_alloc = 3830 Universe::heap()->supports_inline_contig_alloc(); 3831 3832 const Register thread = LP64_ONLY(r15_thread) NOT_LP64(rcx); 3833 #ifndef _LP64 3834 if (UseTLAB || allow_shared_alloc) { 3835 __ get_thread(thread); 3836 } 3837 #endif // _LP64 3838 3839 if (UseTLAB) { 3840 __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset()))); 3841 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3842 __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset()))); 3843 __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case); 3844 __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx); 3845 if (ZeroTLAB) { 3846 // the fields have been already cleared 3847 __ jmp(initialize_header); 3848 } else { 3849 // initialize both the header and fields 3850 __ jmp(initialize_object); 3851 } 3852 } 3853 3854 // Allocation in the shared Eden, if allowed. 3855 // 3856 // rdx: instance size in bytes 3857 if (allow_shared_alloc) { 3858 __ bind(allocate_shared); 3859 3860 ExternalAddress heap_top((address)Universe::heap()->top_addr()); 3861 ExternalAddress heap_end((address)Universe::heap()->end_addr()); 3862 3863 Label retry; 3864 __ bind(retry); 3865 __ movptr(rax, heap_top); 3866 __ lea(rbx, Address(rax, rdx, Address::times_1)); 3867 __ cmpptr(rbx, heap_end); 3868 __ jcc(Assembler::above, slow_case); 3869 3870 // Compare rax, with the top addr, and if still equal, store the new 3871 // top addr in rbx, at the address of the top addr pointer. Sets ZF if was 3872 // equal, and clears it otherwise. Use lock prefix for atomicity on MPs. 3873 // 3874 // rax,: object begin 3875 // rbx,: object end 3876 // rdx: instance size in bytes 3877 __ locked_cmpxchgptr(rbx, heap_top); 3878 3879 // if someone beat us on the allocation, try again, otherwise continue 3880 __ jcc(Assembler::notEqual, retry); 3881 3882 __ incr_allocated_bytes(thread, rdx, 0); 3883 } 3884 3885 if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) { 3886 // The object is initialized before the header. If the object size is 3887 // zero, go directly to the header initialization. 3888 __ bind(initialize_object); 3889 __ decrement(rdx, sizeof(oopDesc)); 3890 __ jcc(Assembler::zero, initialize_header); 3891 3892 // Initialize topmost object field, divide rdx by 8, check if odd and 3893 // test if zero. 3894 __ xorl(rcx, rcx); // use zero reg to clear memory (shorter code) 3895 __ shrl(rdx, LogBytesPerLong); // divide by 2oopSize and set carry flag if odd 3896 3897 // rdx must have been multiple of 8 3898 #ifdef ASSERT 3899 // make sure rdx was multiple of 8 3900 Label L; 3901 // Ignore partial flag stall after shrl() since it is debug VM 3902 __ jccb(Assembler::carryClear, L); 3903 __ stop("object size is not multiple of 2 - adjust this code"); 3904 __ bind(L); 3905 // rdx must be > 0, no extra check needed here 3906 #endif 3907 3908 // initialize remaining object fields: rdx was a multiple of 8 3909 { Label loop; 3910 __ bind(loop); 3911 __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1oopSize), rcx); 3912 NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2oopSize), rcx)); 3913 __ decrement(rdx); 3914 __ jcc(Assembler::notZero, loop); 3915 } 3916 3917 // initialize object header only. 3918 __ bind(initialize_header); 3919 if (UseBiasedLocking) { 3920 __ pop(rcx); // get saved klass back in the register. 3921 __ movptr(rbx, Address(rcx, Klass::prototype_header_offset())); 3922 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx); 3923 } else { 3924 __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), 3925 (intptr_t)markOopDesc::prototype()); // header 3926 __ pop(rcx); // get saved klass back in the register. 3927 } 3928 #ifdef _LP64 3929 __ xorl(rsi, rsi); // use zero reg to clear memory (shorter code) 3930 __ store_klass_gap(rax, rsi); // zero klass gap for compressed oops 3931 #endif 3932 __ store_klass(rax, rcx); // klass 3933 3934 { 3935 SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0); 3936 // Trigger dtrace event for fastpath 3937 __ push(atos); 3938 __ call_VM_leaf( 3939 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax); 3940 __ pop(atos); 3941 } 3942 3943 __ jmp(done); 3944 } 3945 3946 // slow case 3947 __ bind(slow_case); 3948 __ pop(rcx); // restore stack pointer to what it was when we came in. 3949 __ bind(slow_case_no_pop); 3950 3951 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rax); 3952 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 3953 3954 __ get_constant_pool(rarg1); 3955 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 3956 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rarg1, rarg2); 3957 __ verify_oop(rax); 3958 3959 // continue 3960 __ bind(done); 3961 } 3962 3963 void TemplateTable::newarray() { 3964 transition(itos, atos); 3965 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 3966 __ load_unsigned_byte(rarg1, at_bcp(1)); 3967 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), 3968 rarg1, rax); 3969 } 3970 3971 void TemplateTable::anewarray() { 3972 transition(itos, atos); 3973 3974 Register rarg1 = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 3975 Register rarg2 = LP64_ONLY(c_rarg2) NOT_LP64(rdx); 3976 3977 __ get_unsigned_2_byte_index_at_bcp(rarg2, 1); 3978 __ get_constant_pool(rarg1); 3979 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), 3980 rarg1, rarg2, rax); 3981 } 3982 3983 void TemplateTable::arraylength() { 3984 transition(atos, itos); 3985 __ null_check(rax, arrayOopDesc::length_offset_in_bytes()); 3986 __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes())); 3987 } 3988 3989 void TemplateTable::checkcast() { 3990 transition(atos, atos); 3991 Label done, is_null, ok_is_subtype, quicked, resolved; 3992 __ testptr(rax, rax); // object is in rax 3993 __ jcc(Assembler::zero, is_null); 3994 3995 // Get cpool & tags index 3996 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 3997 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 3998 // See if bytecode has already been quicked 3999 __ cmpb(Address(rdx, rbx, 4000 Address::times_1, 4001 Array::base_offset_in_bytes()), 4002 JVM_CONSTANT_Class); 4003 __ jcc(Assembler::equal, quicked); 4004 __ push(atos); // save receiver for result, and for GC 4005 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4006 4007 // vm_result_2 has metadata result 4008 #ifndef _LP64 4009 // borrow rdi from locals 4010 __ get_thread(rdi); 4011 __ get_vm_result_2(rax, rdi); 4012 __ restore_locals(); 4013 #else 4014 __ get_vm_result_2(rax, r15_thread); 4015 #endif 4016 4017 __ pop_ptr(rdx); // restore receiver 4018 __ jmpb(resolved); 4019 4020 // Get superklass in rax and subklass in rbx 4021 __ bind(quicked); 4022 __ mov(rdx, rax); // Save object in rdx; rax needed for subtype check 4023 __ movptr(rax, Address(rcx, rbx, 4024 Address::times_ptr, sizeof(ConstantPool))); 4025 4026 __ bind(resolved); 4027 __ load_klass(rbx, rdx); 4028 4029 // Generate subtype check. Blows rcx, rdi. Object in rdx. 4030 // Superklass in rax. Subklass in rbx. 4031 __ gen_subtype_check(rbx, ok_is_subtype); 4032 4033 // Come here on failure 4034 __ push_ptr(rdx); 4035 // object is at TOS 4036 __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry)); 4037 4038 // Come here on success 4039 __ bind(ok_is_subtype); 4040 __ mov(rax, rdx); // Restore object in rdx 4041 4042 // Collect counts on whether this check-cast sees NULLs a lot or not. 4043 if (ProfileInterpreter) { 4044 __ jmp(done); 4045 __ bind(is_null); 4046 __ profile_null_seen(rcx); 4047 } else { 4048 __ bind(is_null); // same as 'done' 4049 } 4050 __ bind(done); 4051 } 4052 4053 void TemplateTable::instanceof() { 4054 transition(atos, itos); 4055 Label done, is_null, ok_is_subtype, quicked, resolved; 4056 __ testptr(rax, rax); 4057 __ jcc(Assembler::zero, is_null); 4058 4059 // Get cpool & tags index 4060 __ get_cpool_and_tags(rcx, rdx); // rcx=cpool, rdx=tags array 4061 __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // rbx=index 4062 // See if bytecode has already been quicked 4063 __ cmpb(Address(rdx, rbx, 4064 Address::times_1, 4065 Array::base_offset_in_bytes()), 4066 JVM_CONSTANT_Class); 4067 __ jcc(Assembler::equal, quicked); 4068 4069 __ push(atos); // save receiver for result, and for GC 4070 call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc)); 4071 // vm_result_2 has metadata result 4072 4073 #ifndef _LP64 4074 // borrow rdi from locals 4075 __ get_thread(rdi); 4076 __ get_vm_result_2(rax, rdi); 4077 __ restore_locals(); 4078 #else 4079 __ get_vm_result_2(rax, r15_thread); 4080 #endif 4081 4082 __ pop_ptr(rdx); // restore receiver 4083 __ verify_oop(rdx); 4084 __ load_klass(rdx, rdx); 4085 __ jmpb(resolved); 4086 4087 // Get superklass in rax and subklass in rdx 4088 __ bind(quicked); 4089 __ load_klass(rdx, rax); 4090 __ movptr(rax, Address(rcx, rbx, 4091 Address::times_ptr, sizeof(ConstantPool))); 4092 4093 __ bind(resolved); 4094 4095 // Generate subtype check. Blows rcx, rdi 4096 // Superklass in rax. Subklass in rdx. 4097 __ gen_subtype_check(rdx, ok_is_subtype); 4098 4099 // Come here on failure 4100 __ xorl(rax, rax); 4101 __ jmpb(done); 4102 // Come here on success 4103 __ bind(ok_is_subtype); 4104 __ movl(rax, 1); 4105 4106 // Collect counts on whether this test sees NULLs a lot or not. 4107 if (ProfileInterpreter) { 4108 __ jmp(done); 4109 __ bind(is_null); 4110 __ profile_null_seen(rcx); 4111 } else { 4112 __ bind(is_null); // same as 'done' 4113 } 4114 __ bind(done); 4115 // rax = 0: obj == NULL or obj is not an instanceof the specified klass 4116 // rax = 1: obj != NULL and obj is an instanceof the specified klass 4117 } 4118 4119 4120 //---------------------------------------------------------------------------------------------------- 4121 // Breakpoints 4122 void TemplateTable::_breakpoint() { 4123 // Note: We get here even if we are single stepping.. 4124 // jbug insists on setting breakpoints at every bytecode 4125 // even if we are in single step mode. 4126 4127 transition(vtos, vtos); 4128 4129 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rcx); 4130 4131 // get the unpatched byte code 4132 __ get_method(rarg); 4133 __ call_VM(noreg, 4134 CAST_FROM_FN_PTR(address, 4135 InterpreterRuntime::get_original_bytecode_at), 4136 rarg, rbcp); 4137 __ mov(rbx, rax); // why? 4138 4139 // post the breakpoint event 4140 __ get_method(rarg); 4141 __ call_VM(noreg, 4142 CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), 4143 rarg, rbcp); 4144 4145 // complete the execution of original bytecode 4146 __ dispatch_only_normal(vtos); 4147 } 4148 4149 //----------------------------------------------------------------------------- 4150 // Exceptions 4151 4152 void TemplateTable::athrow() { 4153 transition(atos, vtos); 4154 __ null_check(rax); 4155 __ jump(ExternalAddress(Interpreter::throw_exception_entry())); 4156 } 4157 4158 //----------------------------------------------------------------------------- 4159 // Synchronization 4160 // 4161 // Note: monitorenter & exit are symmetric routines; which is reflected 4162 // in the assembly code structure as well 4163 // 4164 // Stack layout: 4165 // 4166 // [expressions ] <--- rsp = expression stack top 4167 // .. 4168 // [expressions ] 4169 // [monitor entry] <--- monitor block top = expression stack bot 4170 // .. 4171 // [monitor entry] 4172 // [frame data ] <--- monitor block bot 4173 // ... 4174 // [saved rbp ] <--- rbp 4175 void TemplateTable::monitorenter() { 4176 transition(atos, vtos); 4177 4178 // check for NULL object 4179 __ null_check(rax); 4180 4181 const Address monitor_block_top( 4182 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4183 const Address monitor_block_bot( 4184 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4185 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4186 4187 Label allocated; 4188 4189 Register rtop = LP64_ONLY(c_rarg3) NOT_LP64(rcx); 4190 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4191 Register rmon = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4192 4193 // initialize entry pointer 4194 __ xorl(rmon, rmon); // points to free slot or NULL 4195 4196 // find a free slot in the monitor block (result in rmon) 4197 { 4198 Label entry, loop, exit; 4199 __ movptr(rtop, monitor_block_top); // points to current entry, 4200 // starting with top-most entry 4201 __ lea(rbot, monitor_block_bot); // points to word before bottom 4202 // of monitor block 4203 __ jmpb(entry); 4204 4205 __ bind(loop); 4206 // check if current entry is used 4207 __ cmpptr(Address(rtop, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL_WORD); 4208 // if not used then remember entry in rmon 4209 __ cmovptr(Assembler::equal, rmon, rtop); // cmov => cmovptr 4210 // check if current entry is for same object 4211 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4212 // if same object then stop searching 4213 __ jccb(Assembler::equal, exit); 4214 // otherwise advance to next entry 4215 __ addptr(rtop, entry_size); 4216 __ bind(entry); 4217 // check if bottom reached 4218 __ cmpptr(rtop, rbot); 4219 // if not at bottom then check this entry 4220 __ jcc(Assembler::notEqual, loop); 4221 __ bind(exit); 4222 } 4223 4224 __ testptr(rmon, rmon); // check if a slot has been found 4225 __ jcc(Assembler::notZero, allocated); // if found, continue with that one 4226 4227 // allocate one if there's no free slot 4228 { 4229 Label entry, loop; 4230 // 1. compute new pointers // rsp: old expression stack top 4231 __ movptr(rmon, monitor_block_bot); // rmon: old expression stack bottom 4232 __ subptr(rsp, entry_size); // move expression stack top 4233 __ subptr(rmon, entry_size); // move expression stack bottom 4234 __ mov(rtop, rsp); // set start value for copy loop 4235 __ movptr(monitor_block_bot, rmon); // set new monitor block bottom 4236 __ jmp(entry); 4237 // 2. move expression stack contents 4238 __ bind(loop); 4239 __ movptr(rbot, Address(rtop, entry_size)); // load expression stack 4240 // word from old location 4241 __ movptr(Address(rtop, 0), rbot); // and store it at new location 4242 __ addptr(rtop, wordSize); // advance to next word 4243 __ bind(entry); 4244 __ cmpptr(rtop, rmon); // check if bottom reached 4245 __ jcc(Assembler::notEqual, loop); // if not at bottom then 4246 // copy next word 4247 } 4248 4249 // call run-time routine 4250 // rmon: points to monitor entry 4251 __ bind(allocated); 4252 4253 // Increment bcp to point to the next bytecode, so exception 4254 // handling for async. exceptions work correctly. 4255 // The object has already been poped from the stack, so the 4256 // expression stack looks correct. 4257 __ increment(rbcp); 4258 4259 // store object 4260 __ movptr(Address(rmon, BasicObjectLock::obj_offset_in_bytes()), rax); 4261 __ lock_object(rmon); 4262 4263 // check to make sure this monitor doesn't cause stack overflow after locking 4264 __ save_bcp(); // in case of exception 4265 __ generate_stack_overflow_check(0); 4266 4267 // The bcp has already been incremented. Just need to dispatch to 4268 // next instruction. 4269 __ dispatch_next(vtos); 4270 } 4271 4272 void TemplateTable::monitorexit() { 4273 transition(atos, vtos); 4274 4275 // check for NULL object 4276 __ null_check(rax); 4277 4278 const Address monitor_block_top( 4279 rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize); 4280 const Address monitor_block_bot( 4281 rbp, frame::interpreter_frame_initial_sp_offset * wordSize); 4282 const int entry_size = frame::interpreter_frame_monitor_size() * wordSize; 4283 4284 Register rtop = LP64_ONLY(c_rarg1) NOT_LP64(rdx); 4285 Register rbot = LP64_ONLY(c_rarg2) NOT_LP64(rbx); 4286 4287 Label found; 4288 4289 // find matching slot 4290 { 4291 Label entry, loop; 4292 __ movptr(rtop, monitor_block_top); // points to current entry, 4293 // starting with top-most entry 4294 __ lea(rbot, monitor_block_bot); // points to word before bottom 4295 // of monitor block 4296 __ jmpb(entry); 4297 4298 __ bind(loop); 4299 // check if current entry is for same object 4300 __ cmpptr(rax, Address(rtop, BasicObjectLock::obj_offset_in_bytes())); 4301 // if same object then stop searching 4302 __ jcc(Assembler::equal, found); 4303 // otherwise advance to next entry 4304 __ addptr(rtop, entry_size); 4305 __ bind(entry); 4306 // check if bottom reached 4307 __ cmpptr(rtop, rbot); 4308 // if not at bottom then check this entry 4309 __ jcc(Assembler::notEqual, loop); 4310 } 4311 4312 // error handling. Unlocking was not block-structured 4313 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 4314 InterpreterRuntime::throw_illegal_monitor_state_exception)); 4315 __ should_not_reach_here(); 4316 4317 // call run-time routine 4318 __ bind(found); 4319 __ push_ptr(rax); // make sure object is on stack (contract with oopMaps) 4320 __ unlock_object(rtop); 4321 __ pop_ptr(rax); // discard object 4322 } 4323 4324 // Wide instructions 4325 void TemplateTable::wide() { 4326 transition(vtos, vtos); 4327 __ load_unsigned_byte(rbx, at_bcp(1)); 4328 ExternalAddress wtable((address)Interpreter::_wentry_point); 4329 __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr))); 4330 // Note: the rbcp increment step is part of the individual wide bytecode implementations 4331 } 4332 4333 // Multi arrays 4334 void TemplateTable::multianewarray() { 4335 transition(vtos, atos); 4336 4337 Register rarg = LP64_ONLY(c_rarg1) NOT_LP64(rax); 4338 __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions 4339 // last dim is on top of stack; we want address of first one: 4340 // first_addr = last_addr + (ndims - 1) * stackElementSize - 1wordsize 4341 // the latter wordSize to point to the beginning of the array. 4342 __ lea(rarg, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize)); 4343 call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rarg); 4344 __ load_unsigned_byte(rbx, at_bcp(3)); 4345 __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale())); // get rid of counts 4346 } 4347 #endif / !CC_INTERP */ 4348