New src/share/vm/code/relocInfo.hpp (original) (raw)

1 /* 2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 / 24 25 #ifndef SHARE_VM_CODE_RELOCINFO_HPP 26 #define SHARE_VM_CODE_RELOCINFO_HPP 27 28 #include "memory/allocation.hpp" 29 #include "utilities/top.hpp" 30 31 class NativeMovConstReg; 32 33 // Types in this file: 34 // relocInfo 35 // One element of an array of halfwords encoding compressed relocations. 36 // Also, the source of relocation types (relocInfo::oop_type, ...). 37 // Relocation 38 // A flyweight object representing a single relocation. 39 // It is fully unpacked from the compressed relocation array. 40 // metadata_Relocation, ... (subclasses of Relocation) 41 // The location of some type-specific operations (metadata_addr, ...). 42 // Also, the source of relocation specs (metadata_Relocation::spec, ...). 43 // oop_Relocation, ... (subclasses of Relocation) 44 // oops in the code stream (strings, class loaders) 45 // Also, the source of relocation specs (oop_Relocation::spec, ...). 46 // RelocationHolder 47 // A ValueObj type which acts as a union holding a Relocation object. 48 // Represents a relocation spec passed into a CodeBuffer during assembly. 49 // RelocIterator 50 // A StackObj which iterates over the relocations associated with 51 // a range of code addresses. Can be used to operate a copy of code. 52 // BoundRelocation 53 // An internal type shared by packers and unpackers of relocations. 54 // It pastes together a RelocationHolder with some pointers into 55 // code and relocInfo streams. 56 57 58 // Notes on relocType: 59 // 60 // These hold enough information to read or write a value embedded in 61 // the instructions of an CodeBlob. They're used to update: 62 // 63 // 1) embedded oops (isOop() == true) 64 // 2) inline caches (isIC() == true) 65 // 3) runtime calls (isRuntimeCall() == true) 66 // 4) internal word ref (isInternalWord() == true) 67 // 5) external word ref (isExternalWord() == true) 68 // 69 // when objects move (GC) or if code moves (compacting the code heap). 70 // They are also used to patch the code (if a call site must change) 71 // 72 // A relocInfo is represented in 16 bits: 73 // 4 bits indicating the relocation type 74 // 12 bits indicating the offset from the previous relocInfo address 75 // 76 // The offsets accumulate along the relocInfo stream to encode the 77 // address within the CodeBlob, which is named RelocIterator::addr(). 78 // The address of a particular relocInfo always points to the first 79 // byte of the relevant instruction (and not to any of its subfields 80 // or embedded immediate constants). 81 // 82 // The offset value is scaled appropriately for the target machine. 83 // (See relocInfo_.hpp for the offset scaling.) 84 // 85 // On some machines, there may also be a "format" field which may provide 86 // additional information about the format of the instruction stream 87 // at the corresponding code address. The format value is usually zero. 88 // Any machine (such as Intel) whose instructions can sometimes contain 89 // more than one relocatable constant needs format codes to distinguish 90 // which operand goes with a given relocation. 91 // 92 // If the target machine needs N format bits, the offset has 12-N bits, 93 // the format is encoded between the offset and the type, and the 94 // relocInfo_.hpp file has manifest constants for the format codes. 95 // 96 // If the type is "data_prefix_tag" then the offset bits are further encoded, 97 // and in fact represent not a code-stream offset but some inline data. 98 // The data takes the form of a counted sequence of halfwords, which 99 // precedes the actual relocation record. (Clients never see it directly.) 100 // The interpetation of this extra data depends on the relocation type. 101 // 102 // On machines that have 32-bit immediate fields, there is usually 103 // little need for relocation "prefix" data, because the instruction stream 104 // is a perfectly reasonable place to store the value. On machines in 105 // which 32-bit values must be "split" across instructions, the relocation 106 // data is the "true" specification of the value, which is then applied 107 // to some field of the instruction (22 or 13 bits, on SPARC). 108 // 109 // Whenever the location of the CodeBlob changes, any PC-relative 110 // relocations, and any internal_word_type relocations, must be reapplied. 111 // After the GC runs, oop_type relocations must be reapplied. 112 // 113 // 114 // Here are meanings of the types: 115 // 116 // relocInfo::none -- a filler record 117 // Value: none 118 // Instruction: The corresponding code address is ignored 119 // Data: Any data prefix and format code are ignored 120 // (This means that any relocInfo can be disabled by setting 121 // its type to none. See relocInfo::remove.) 122 // 123 // relocInfo::oop_type, relocInfo::metadata_type -- a reference to an oop or meta data 124 // Value: an oop, or else the address (handle) of an oop 125 // Instruction types: memory (load), set (load address) 126 // Data: [] an oop stored in 4 bytes of instruction 127 // [n] n is the index of an oop in the CodeBlob's oop pool 128 // [[N]n l] and l is a byte offset to be applied to the oop 129 // [Nn Ll] both index and offset may be 32 bits if necessary 130 // Here is a special hack, used only by the old compiler: 131 // [[N]n 00] the value is the address of the nth oop in the pool 132 // (Note that the offset allows optimal references to class variables.) 133 // 134 // relocInfo::internal_word_type -- an address within the same CodeBlob 135 // relocInfo::section_word_type -- same, but can refer to another section 136 // Value: an address in the CodeBlob's code or constants section 137 // Instruction types: memory (load), set (load address) 138 // Data: [] stored in 4 bytes of instruction 139 // [[L]l] a relative offset (see [About Offsets] below) 140 // In the case of section_word_type, the offset is relative to a section 141 // base address, and the section number (e.g., SECT_INSTS) is encoded 142 // into the low two bits of the offset L. 143 // 144 // relocInfo::external_word_type -- a fixed address in the runtime system 145 // Value: an address 146 // Instruction types: memory (load), set (load address) 147 // Data: [] stored in 4 bytes of instruction 148 // [n] the index of a "well-known" stub (usual case on RISC) 149 // [Ll] a 32-bit address 150 // 151 // relocInfo::runtime_call_type -- a fixed subroutine in the runtime system 152 // Value: an address 153 // Instruction types: PC-relative call (or a PC-relative branch) 154 // Data: [] stored in 4 bytes of instruction 155 // 156 // relocInfo::static_call_type -- a static call 157 // Value: an CodeBlob, a stub, or a fixup routine 158 // Instruction types: a call 159 // Data: [] 160 // The identity of the callee is extracted from debugging information. 161 // //%note reloc_3 162 // 163 // relocInfo::virtual_call_type -- a virtual call site (which includes an inline 164 // cache) 165 // Value: an CodeBlob, a stub, the interpreter, or a fixup routine 166 // Instruction types: a call, plus some associated set-oop instructions 167 // Data: [] the associated set-oops are adjacent to the call 168 // [n] n is a relative offset to the first set-oop 169 // [[N]n l] and l is a limit within which the set-oops occur 170 // [Nn Ll] both n and l may be 32 bits if necessary 171 // The identity of the callee is extracted from debugging information. 172 // 173 // relocInfo::opt_virtual_call_type -- a virtual call site that is statically bound 174 // 175 // Same info as a static_call_type. We use a special type, so the handling of 176 // virtuals and statics are separated. 177 // 178 // 179 // The offset n points to the first set-oop. (See [About Offsets] below.) 180 // In turn, the set-oop instruction specifies or contains an oop cell devoted 181 // exclusively to the IC call, which can be patched along with the call. 182 // 183 // The locations of any other set-oops are found by searching the relocation 184 // information starting at the first set-oop, and continuing until all 185 // relocations up through l have been inspected. The value l is another 186 // relative offset. (Both n and l are relative to the call's first byte.) 187 // 188 // The limit l of the search is exclusive. However, if it points within 189 // the call (e.g., offset zero), it is adjusted to point after the call and 190 // any associated machine-specific delay slot. 191 // 192 // Since the offsets could be as wide as 32-bits, these conventions 193 // put no restrictions whatever upon code reorganization. 194 // 195 // The compiler is responsible for ensuring that transition from a clean 196 // state to a monomorphic compiled state is MP-safe. This implies that 197 // the system must respond well to intermediate states where a random 198 // subset of the set-oops has been correctly from the clean state 199 // upon entry to the VEP of the compiled method. In the case of a 200 // machine (Intel) with a single set-oop instruction, the 32-bit 201 // immediate field must not straddle a unit of memory coherence. 202 // //%note reloc_3 203 // 204 // relocInfo::static_stub_type -- an extra stub for each static_call_type 205 // Value: none 206 // Instruction types: a virtual call: { set_oop; jump; } 207 // Data: [[N]n] the offset of the associated static_call reloc 208 // This stub becomes the target of a static call which must be upgraded 209 // to a virtual call (because the callee is interpreted). 210 // See [About Offsets] below. 211 // //%note reloc_2 212 // 213 // relocInfo::poll_[return_]type -- a safepoint poll 214 // Value: none 215 // Instruction types: memory load or test 216 // Data: none 217 // 218 // For example: 219 // 220 // INSTRUCTIONS RELOC: TYPE PREFIX DATA 221 // ------------ ---- ----------- 222 // sethi %hi(myObject), R oop_type [n(myObject)] 223 // ld [R+%lo(myObject)+fldOffset], R2 oop_type [n(myObject) fldOffset] 224 // add R2, 1, R2 225 // st R2, [R+%lo(myObject)+fldOffset] oop_type [n(myObject) fldOffset] 226 //%note reloc_1 227 // 228 // This uses 4 instruction words, 8 relocation halfwords, 229 // and an entry (which is sharable) in the CodeBlob's oop pool, 230 // for a total of 36 bytes. 231 // 232 // Note that the compiler is responsible for ensuring the "fldOffset" when 233 // added to "%lo(myObject)" does not overflow the immediate fields of the 234 // memory instructions. 235 // 236 // 237 // [About Offsets] Relative offsets are supplied to this module as 238 // positive byte offsets, but they may be internally stored scaled 239 // and/or negated, depending on what is most compact for the target 240 // system. Since the object pointed to by the offset typically 241 // precedes the relocation address, it is profitable to store 242 // these negative offsets as positive numbers, but this decision 243 // is internal to the relocation information abstractions. 244 // 245 246 class Relocation; 247 class CodeBuffer; 248 class CodeSection; 249 class RelocIterator; 250 251 class relocInfo VALUE_OBJ_CLASS_SPEC { 252 friend class RelocIterator; 253 public: 254 enum relocType { 255 none = 0, // Used when no relocation should be generated 256 oop_type = 1, // embedded oop 257 virtual_call_type = 2, // a standard inline cache call for a virtual send 258 opt_virtual_call_type = 3, // a virtual call that has been statically bound (i.e., no IC cache) 259 static_call_type = 4, // a static send 260 static_stub_type = 5, // stub-entry for static send (takes care of interpreter case) 261 runtime_call_type = 6, // call to fixed external routine 262 external_word_type = 7, // reference to fixed external address 263 internal_word_type = 8, // reference within the current code blob 264 section_word_type = 9, // internal, but a cross-section reference 265 poll_type = 10, // polling instruction for safepoints 266 poll_return_type = 11, // polling instruction for safepoints at return 267 metadata_type = 12, // metadata that used to be oops 268 trampoline_stub_type = 13, // stub-entry for trampoline 269 yet_unused_type_1 = 14, // Still unused 270 data_prefix_tag = 15, // tag for a prefix (carries data arguments) 271 type_mask = 15 // A mask which selects only the above values 272 }; 273 274 protected: 275 unsigned short _value; 276 277 enum RawBitsToken { RAW_BITS }; 278 relocInfo(relocType type, RawBitsToken ignore, int bits) 279 : _value((type << nontype_width) + bits) { } 280 281 relocInfo(relocType type, RawBitsToken ignore, int off, int f) 282 : _value((type << nontype_width) + (off / (unsigned)offset_unit) + (f << offset_width)) { } 283 284 public: 285 // constructor 286 relocInfo(relocType type, int offset, int format = 0) 287 #ifndef ASSERT 288 { 289 (*this) = relocInfo(type, RAW_BITS, offset, format); 290 } 291 #else 292 // Put a bunch of assertions out-of-line. 293 ; 294 #endif 295 296 #define APPLY_TO_RELOCATIONS(visitor)
297 visitor(oop)
298 visitor(metadata)
299 visitor(virtual_call)
300 visitor(opt_virtual_call)
301 visitor(static_call)
302 visitor(static_stub)
303 visitor(runtime_call)
304 visitor(external_word)
305 visitor(internal_word)
306 visitor(poll)
307 visitor(poll_return)
308 visitor(section_word)
309 visitor(trampoline_stub)
310 311 312 public: 313 enum { 314 value_width = sizeof(unsigned short) * BitsPerByte, 315 type_width = 4, // == log2(type_mask+1) 316 nontype_width = value_width - type_width, 317 datalen_width = nontype_width-1, 318 datalen_tag = 1 << datalen_width, // or-ed into _value 319 datalen_limit = 1 << datalen_width, 320 datalen_mask = (1 << datalen_width)-1 321 }; 322 323 // accessors 324 public: 325 relocType type() const { return (relocType)((unsigned)_value >> nontype_width); } 326 int format() const { return format_mask==0? 0: format_mask & 327 ((unsigned)_value >> offset_width); } 328 int addr_offset() const { assert(!is_prefix(), "must have offset"); 329 return (_value & offset_mask)offset_unit; } 330 331 protected: 332 const short data() const { assert(is_datalen(), "must have data"); 333 return (const short
)(this + 1); } 334 int datalen() const { assert(is_datalen(), "must have data"); 335 return (_value & datalen_mask); } 336 int immediate() const { assert(is_immediate(), "must have immed"); 337 return (_value & datalen_mask); } 338 public: 339 static int addr_unit() { return offset_unit; } 340 static int offset_limit() { return (1 << offset_width) * offset_unit; } 341 342 void set_type(relocType type); 343 void set_format(int format); 344 345 void remove() { set_type(none); } 346 347 protected: 348 bool is_none() const { return type() == none; } 349 bool is_prefix() const { return type() == data_prefix_tag; } 350 bool is_datalen() const { assert(is_prefix(), "must be prefix"); 351 return (_value & datalen_tag) != 0; } 352 bool is_immediate() const { assert(is_prefix(), "must be prefix"); 353 return (_value & datalen_tag) == 0; } 354 355 public: 356 // Occasionally records of type relocInfo::none will appear in the stream. 357 // We do not bother to filter these out, but clients should ignore them. 358 // These records serve as "filler" in three ways: 359 // - to skip large spans of unrelocated code (this is rare) 360 // - to pad out the relocInfo array to the required oop alignment 361 // - to disable old relocation information which is no longer applicable 362 363 inline friend relocInfo filler_relocInfo(); 364 365 // Every non-prefix relocation may be preceded by at most one prefix, 366 // which supplies 1 or more halfwords of associated data. Conventionally, 367 // an int is represented by 0, 1, or 2 halfwords, depending on how 368 // many bits are required to represent the value. (In addition, 369 // if the sole halfword is a 10-bit unsigned number, it is made 370 // "immediate" in the prefix header word itself. This optimization 371 // is invisible outside this module.) 372 373 inline friend relocInfo prefix_relocInfo(int datalen); 374 375 protected: 376 // an immediate relocInfo optimizes a prefix with one 10-bit unsigned value 377 static relocInfo immediate_relocInfo(int data0) { 378 assert(fits_into_immediate(data0), "data0 in limits"); 379 return relocInfo(relocInfo::data_prefix_tag, RAW_BITS, data0); 380 } 381 static bool fits_into_immediate(int data0) { 382 return (data0 >= 0 && data0 < datalen_limit); 383 } 384 385 public: 386 // Support routines for compilers. 387 388 // This routine takes an infant relocInfo (unprefixed) and 389 // edits in its prefix, if any. It also updates dest.locs_end. 390 void initialize(CodeSection* dest, Relocation* reloc); 391 392 // This routine updates a prefix and returns the limit pointer. 393 // It tries to compress the prefix from 32 to 16 bits, and if 394 // successful returns a reduced "prefix_limit" pointer. 395 relocInfo* finish_prefix(short* prefix_limit); 396 397 // bit-packers for the data array: 398 399 // As it happens, the bytes within the shorts are ordered natively, 400 // but the shorts within the word are ordered big-endian. 401 // This is an arbitrary choice, made this way mainly to ease debugging. 402 static int data0_from_int(jint x) { return x >> value_width; } 403 static int data1_from_int(jint x) { return (short)x; } 404 static jint jint_from_data(short* data) { 405 return (data[0] << value_width) + (unsigned short)data[1]; 406 } 407 408 static jint short_data_at(int n, short* data, int datalen) { 409 return datalen > n ? data[n] : 0; 410 } 411 412 static jint jint_data_at(int n, short* data, int datalen) { 413 return datalen > n+1 ? jint_from_data(&data[n]) : short_data_at(n, data, datalen); 414 } 415 416 // Update methods for relocation information 417 // (since code is dynamically patched, we also need to dynamically update the relocation info) 418 // Both methods takes old_type, so it is able to performe sanity checks on the information removed. 419 static void change_reloc_info_for_address(RelocIterator itr, address pc, relocType old_type, relocType new_type); 420 static void remove_reloc_info_for_address(RelocIterator itr, address pc, relocType old_type); 421 422 // Machine dependent stuff 423 #ifdef TARGET_ARCH_x86 424 # include "relocInfo_x86.hpp" 425 #endif 426 #ifdef TARGET_ARCH_sparc 427 # include "relocInfo_sparc.hpp" 428 #endif 429 #ifdef TARGET_ARCH_zero 430 # include "relocInfo_zero.hpp" 431 #endif 432 #ifdef TARGET_ARCH_arm 433 # include "relocInfo_arm.hpp" 434 #endif 435 #ifdef TARGET_ARCH_ppc 436 # include "relocInfo_ppc.hpp" 437 #endif 438 #ifdef TARGET_ARCH_aarch64 439 # include "relocInfo_aarch64.hpp" 440 #endif 441 442 protected: 443 // Derived constant, based on format_width which is PD: 444 enum { 445 offset_width = nontype_width - format_width, 446 offset_mask = (1<<offset_width) - 1, 447 format_mask = (1<<format_width) - 1 448 }; 449 public: 450 enum { 451 #ifdef _LP64 452 // for use in format 453 // format_width must be at least 1 on _LP64 454 narrow_oop_in_const = 1, 455 #endif 456 // Conservatively large estimate of maximum length (in shorts) 457 // of any relocation record. 458 // Extended format is length prefix, data words, and tag/offset suffix. 459 length_limit = 1 + 1 + (3*BytesPerWord/BytesPerShort) + 1, 460 have_format = format_width > 0 461 }; 462 }; 463 464 #define FORWARD_DECLARE_EACH_CLASS(name)
465 class name##_Relocation; 466 APPLY_TO_RELOCATIONS(FORWARD_DECLARE_EACH_CLASS) 467 #undef FORWARD_DECLARE_EACH_CLASS 468 469 470 471 inline relocInfo filler_relocInfo() { 472 return relocInfo(relocInfo::none, relocInfo::offset_limit() - relocInfo::offset_unit); 473 } 474 475 inline relocInfo prefix_relocInfo(int datalen = 0) { 476 assert(relocInfo::fits_into_immediate(datalen), "datalen in limits"); 477 return relocInfo(relocInfo::data_prefix_tag, relocInfo::RAW_BITS, relocInfo::datalen_tag | datalen); 478 } 479 480 481 // Holder for flyweight relocation objects. 482 // Although the flyweight subclasses are of varying sizes, 483 // the holder is "one size fits all". 484 class RelocationHolder VALUE_OBJ_CLASS_SPEC { 485 friend class Relocation; 486 friend class CodeSection; 487 488 private: 489 // this preallocated memory must accommodate all subclasses of Relocation 490 // (this number is assertion-checked in Relocation::operator new) 491 enum { _relocbuf_size = 5 }; 492 void
_relocbuf[ _relocbuf_size ]; 493 494 public: 495 Relocation
reloc() const { return (Relocation*) &_relocbuf[0]; } 496 inline relocInfo::relocType type() const; 497 498 // Add a constant offset to a relocation. Helper for class Address. 499 RelocationHolder plus(int offset) const; 500 501 inline RelocationHolder(); // initializes type to none 502 503 inline RelocationHolder(Relocation* r); // make a copy 504 505 static const RelocationHolder none; 506 }; 507 508 // A RelocIterator iterates through the relocation information of a CodeBlob. 509 // It is a variable BoundRelocation which is able to take on successive 510 // values as it is advanced through a code stream. 511 // Usage: 512 // RelocIterator iter(nm); 513 // while (iter.next()) { 514 // iter.reloc()->some_operation(); 515 // } 516 // or: 517 // RelocIterator iter(nm); 518 // while (iter.next()) { 519 // switch (iter.type()) { 520 // case relocInfo::oop_type : 521 // case relocInfo::ic_type : 522 // case relocInfo::prim_type : 523 // case relocInfo::uncommon_type : 524 // case relocInfo::runtime_call_type : 525 // case relocInfo::internal_word_type: 526 // case relocInfo::external_word_type: 527 // ... 528 // } 529 // } 530 531 class RelocIterator : public StackObj { 532 enum { SECT_LIMIT = 3 }; // must be equal to CodeBuffer::SECT_LIMIT, checked in ctor 533 friend class Relocation; 534 friend class relocInfo; // for change_reloc_info_for_address only 535 typedef relocInfo::relocType relocType; 536 537 private: 538 address _limit; // stop producing relocations after this _addr 539 relocInfo* _current; // the current relocation information 540 relocInfo* _end; // end marker; we're done iterating when _current == _end 541 nmethod* _code; // compiled method containing _addr 542 address _addr; // instruction to which the relocation applies 543 short _databuf; // spare buffer for compressed data 544 short* _data; // pointer to the relocation's data 545 short _datalen; // number of halfwords in _data 546 char _format; // position within the instruction 547 548 // Base addresses needed to compute targets of section_word_type relocs. 549 address _section_start[SECT_LIMIT]; 550 address _section_end [SECT_LIMIT]; 551 552 void set_has_current(bool b) { 553 _datalen = !b ? -1 : 0; 554 debug_only(_data = NULL); 555 } 556 void set_current(relocInfo& ri) { 557 _current = &ri; 558 set_has_current(true); 559 } 560 561 RelocationHolder _rh; // where the current relocation is allocated 562 563 relocInfo* current() const { assert(has_current(), "must have current"); 564 return _current; } 565 566 void set_limits(address begin, address limit); 567 568 void advance_over_prefix(); // helper method 569 570 void initialize_misc(); 571 572 void initialize(nmethod* nm, address begin, address limit); 573 574 RelocIterator() { initialize_misc(); } 575 576 public: 577 // constructor 578 RelocIterator(nmethod* nm, address begin = NULL, address limit = NULL); 579 RelocIterator(CodeSection* cb, address begin = NULL, address limit = NULL); 580 581 // get next reloc info, return !eos 582 bool next() { 583 _current++; 584 assert(_current <= _end, "must not overrun relocInfo"); 585 if (_current == _end) { 586 set_has_current(false); 587 return false; 588 } 589 set_has_current(true); 590 591 if (_current->is_prefix()) { 592 advance_over_prefix(); 593 assert(!current()->is_prefix(), "only one prefix at a time"); 594 } 595 596 _addr += _current->addr_offset(); 597 598 if (_limit != NULL && _addr >= _limit) { 599 set_has_current(false); 600 return false; 601 } 602 603 if (relocInfo::have_format) _format = current()->format(); 604 return true; 605 } 606 607 // accessors 608 address limit() const { return _limit; } 609 void set_limit(address x); 610 relocType type() const { return current()->type(); } 611 int format() const { return (relocInfo::have_format) ? current()->format() : 0; } 612 address addr() const { return _addr; } 613 nmethod* code() const { return _code; } 614 short* data() const { return _data; } 615 int datalen() const { return _datalen; } 616 bool has_current() const { return _datalen >= 0; } 617 618 void set_addr(address addr) { _addr = addr; } 619 bool addr_in_const() const; 620 621 address section_start(int n) const { 622 assert(_section_start[n], "must be initialized"); 623 return _section_start[n]; 624 } 625 address section_end(int n) const { 626 assert(_section_end[n], "must be initialized"); 627 return _section_end[n]; 628 } 629 630 // The address points to the affected displacement part of the instruction. 631 // For RISC, this is just the whole instruction. 632 // For Intel, this is an unaligned 32-bit word. 633 634 // type-specific relocation accessors: oop_Relocation* oop_reloc(), etc. 635 #define EACH_TYPE(name)
636 inline name##_Relocation* name##_reloc(); 637 APPLY_TO_RELOCATIONS(EACH_TYPE) 638 #undef EACH_TYPE 639 // generic relocation accessor; switches on type to call the above 640 Relocation* reloc(); 641 642 // CodeBlob's have relocation indexes for faster random access: 643 static int locs_and_index_size(int code_size, int locs_size); 644 // Store an index into [dest_start+dest_count..dest_end). 645 // At dest_start[0..dest_count] is the actual relocation information. 646 // Everything else up to dest_end is free space for the index. 647 static void create_index(relocInfo* dest_begin, int dest_count, relocInfo* dest_end); 648 649 #ifndef PRODUCT 650 public: 651 void print(); 652 void print_current(); 653 #endif 654 }; 655 656 657 // A Relocation is a flyweight object allocated within a RelocationHolder. 658 // It represents the relocation data of relocation record. 659 // So, the RelocIterator unpacks relocInfos into Relocations. 660 661 class Relocation VALUE_OBJ_CLASS_SPEC { 662 friend class RelocationHolder; 663 friend class RelocIterator; 664 665 private: 666 static void guarantee_size(); 667 668 // When a relocation has been created by a RelocIterator, 669 // this field is non-null. It allows the relocation to know 670 // its context, such as the address to which it applies. 671 RelocIterator* _binding; 672 673 protected: 674 RelocIterator* binding() const { 675 assert(_binding != NULL, "must be bound"); 676 return _binding; 677 } 678 void set_binding(RelocIterator* b) { 679 assert(_binding == NULL, "must be unbound"); 680 _binding = b; 681 assert(_binding != NULL, "must now be bound"); 682 } 683 684 Relocation() { 685 _binding = NULL; 686 } 687 688 static RelocationHolder newHolder() { 689 return RelocationHolder(); 690 } 691 692 public: 693 void* operator new(size_t size, const RelocationHolder& holder) throw() { 694 if (size > sizeof(holder._relocbuf)) guarantee_size(); 695 assert((void* const )holder.reloc() == &holder._relocbuf[0], "ptrs must agree"); 696 return holder.reloc(); 697 } 698 699 // make a generic relocation for a given type (if possible) 700 static RelocationHolder spec_simple(relocInfo::relocType rtype); 701 702 // here is the type-specific hook which writes relocation data: 703 virtual void pack_data_to(CodeSection dest) { } 704 705 // here is the type-specific hook which reads (unpacks) relocation data: 706 virtual void unpack_data() { 707 assert(datalen()==0 || type()==relocInfo::none, "no data here"); 708 } 709 710 static bool is_reloc_index(intptr_t index) { 711 return 0 < index && index < os::vm_page_size(); 712 } 713 714 protected: 715 // Helper functions for pack_data_to() and unpack_data(). 716 717 // Most of the compression logic is confined here. 718 // (The "immediate data" mechanism of relocInfo works independently 719 // of this stuff, and acts to further compress most 1-word data prefixes.) 720 721 // A variable-width int is encoded as a short if it will fit in 16 bits. 722 // The decoder looks at datalen to decide whether to unpack short or jint. 723 // Most relocation records are quite simple, containing at most two ints. 724 725 static bool is_short(jint x) { return x == (short)x; } 726 static short* add_short(short* p, int x) { p++ = x; return p; } 727 static short* add_jint (short* p, jint x) { 728 p++ = relocInfo::data0_from_int(x); p++ = relocInfo::data1_from_int(x); 729 return p; 730 } 731 static short add_var_int(short p, jint x) { // add a variable-width int 732 if (is_short(x)) p = add_short(p, x); 733 else p = add_jint (p, x); 734 return p; 735 } 736 737 static short* pack_1_int_to(short* p, jint x0) { 738 // Format is one of: [] [x] [Xx] 739 if (x0 != 0) p = add_var_int(p, x0); 740 return p; 741 } 742 int unpack_1_int() { 743 assert(datalen() <= 2, "too much data"); 744 return relocInfo::jint_data_at(0, data(), datalen()); 745 } 746 747 // With two ints, the short form is used only if both ints are short. 748 short* pack_2_ints_to(short* p, jint x0, jint x1) { 749 // Format is one of: [] [x y?] [Xx Y?y] 750 if (x0 == 0 && x1 == 0) { 751 // no halfwords needed to store zeroes 752 } else if (is_short(x0) && is_short(x1)) { 753 // 1-2 halfwords needed to store shorts 754 p = add_short(p, x0); if (x1!=0) p = add_short(p, x1); 755 } else { 756 // 3-4 halfwords needed to store jints 757 p = add_jint(p, x0); p = add_var_int(p, x1); 758 } 759 return p; 760 } 761 void unpack_2_ints(jint& x0, jint& x1) { 762 int dlen = datalen(); 763 short* dp = data(); 764 if (dlen <= 2) { 765 x0 = relocInfo::short_data_at(0, dp, dlen); 766 x1 = relocInfo::short_data_at(1, dp, dlen); 767 } else { 768 assert(dlen <= 4, "too much data"); 769 x0 = relocInfo::jint_data_at(0, dp, dlen); 770 x1 = relocInfo::jint_data_at(2, dp, dlen); 771 } 772 } 773 774 protected: 775 // platform-independent utility for patching constant section 776 void const_set_data_value (address x); 777 void const_verify_data_value (address x); 778 // platform-dependent utilities for decoding and patching instructions 779 void pd_set_data_value (address x, intptr_t off, bool verify_only = false); // a set or mem-ref 780 void pd_verify_data_value (address x, intptr_t off) { pd_set_data_value(x, off, true); } 781 address pd_call_destination (address orig_addr = NULL); 782 void pd_set_call_destination (address x); 783 784 // this extracts the address of an address in the code stream instead of the reloc data 785 address* pd_address_in_code (); 786 787 // this extracts an address from the code stream instead of the reloc data 788 address pd_get_address_from_code (); 789 790 // these convert from byte offsets, to scaled offsets, to addresses 791 static jint scaled_offset(address x, address base) { 792 int byte_offset = x - base; 793 int offset = -byte_offset / relocInfo::addr_unit(); 794 assert(address_from_scaled_offset(offset, base) == x, "just checkin'"); 795 return offset; 796 } 797 static jint scaled_offset_null_special(address x, address base) { 798 // Some relocations treat offset=0 as meaning NULL. 799 // Handle this extra convention carefully. 800 if (x == NULL) return 0; 801 assert(x != base, "offset must not be zero"); 802 return scaled_offset(x, base); 803 } 804 static address address_from_scaled_offset(jint offset, address base) { 805 int byte_offset = -( offset * relocInfo::addr_unit() ); 806 return base + byte_offset; 807 } 808 809 // these convert between indexes and addresses in the runtime system 810 static int32_t runtime_address_to_index(address runtime_address); 811 static address index_to_runtime_address(int32_t index); 812 813 // helpers for mapping between old and new addresses after a move or resize 814 address old_addr_for(address newa, const CodeBuffer* src, CodeBuffer* dest); 815 address new_addr_for(address olda, const CodeBuffer* src, CodeBuffer* dest); 816 void normalize_address(address& addr, const CodeSection* dest, bool allow_other_sections = false); 817 818 public: 819 // accessors which only make sense for a bound Relocation 820 address addr() const { return binding()->addr(); } 821 nmethod code() const { return binding()->code(); } 822 bool addr_in_const() const { return binding()->addr_in_const(); } 823 protected: 824 short* data() const { return binding()->data(); } 825 int datalen() const { return binding()->datalen(); } 826 int format() const { return binding()->format(); } 827 828 public: 829 virtual relocInfo::relocType type() { return relocInfo::none; } 830 831 // is it a call instruction? 832 virtual bool is_call() { return false; } 833 834 // is it a data movement instruction? 835 virtual bool is_data() { return false; } 836 837 // some relocations can compute their own values 838 virtual address value(); 839 840 // all relocations are able to reassert their values 841 virtual void set_value(address x); 842 843 virtual void clear_inline_cache() { } 844 845 // This method assumes that all virtual/static (inline) caches are cleared (since for static_call_type and 846 // ic_call_type is not always posisition dependent (depending on the state of the cache)). However, this is 847 // probably a reasonable assumption, since empty caches simplifies code reloacation. 848 virtual void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) { } 849 850 void print(); 851 }; 852 853 854 // certain inlines must be deferred until class Relocation is defined: 855 856 inline RelocationHolder::RelocationHolder() { 857 // initialize the vtbl, just to keep things type-safe 858 new(this) Relocation(); 859 } 860 861 862 inline RelocationHolder::RelocationHolder(Relocation r) { 863 // wordwise copy from r (ok if it copies garbage after r) 864 for (int i = 0; i < _relocbuf_size; i++) { 865 _relocbuf[i] = ((void**)r)[i]; 866 } 867 } 868 869 870 relocInfo::relocType RelocationHolder::type() const { 871 return reloc()->type(); 872 } 873 874 // A DataRelocation always points at a memory or load-constant instruction.. 875 // It is absolute on most machines, and the constant is split on RISCs. 876 // The specific subtypes are oop, external_word, and internal_word. 877 // By convention, the "value" does not include a separately reckoned "offset". 878 class DataRelocation : public Relocation { 879 public: 880 bool is_data() { return true; } 881 882 // both target and offset must be computed somehow from relocation data 883 virtual int offset() { return 0; } 884 address value() = 0; 885 void set_value(address x) { set_value(x, offset()); } 886 void set_value(address x, intptr_t o) { 887 if (addr_in_const()) 888 const_set_data_value(x); 889 else 890 pd_set_data_value(x, o); 891 } 892 void verify_value(address x) { 893 if (addr_in_const()) 894 const_verify_data_value(x); 895 else 896 pd_verify_data_value(x, offset()); 897 } 898 899 // The "o" (displacement) argument is relevant only to split relocations 900 // on RISC machines. In some CPUs (SPARC), the set-hi and set-lo ins'ns 901 // can encode more than 32 bits between them. This allows compilers to 902 // share set-hi instructions between addresses that differ by a small 903 // offset (e.g., different static variables in the same class). 904 // On such machines, the "x" argument to set_value on all set-lo 905 // instructions must be the same as the "x" argument for the 906 // corresponding set-hi instructions. The "o" arguments for the 907 // set-hi instructions are ignored, and must not affect the high-half 908 // immediate constant. The "o" arguments for the set-lo instructions are 909 // added into the low-half immediate constant, and must not overflow it. 910 }; 911 912 // A CallRelocation always points at a call instruction. 913 // It is PC-relative on most machines. 914 class CallRelocation : public Relocation { 915 public: 916 bool is_call() { return true; } 917 918 address destination() { return pd_call_destination(); } 919 void set_destination(address x); // pd_set_call_destination 920 921 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest); 922 address value() { return destination(); } 923 void set_value(address x) { set_destination(x); } 924 }; 925 926 class oop_Relocation : public DataRelocation { 927 relocInfo::relocType type() { return relocInfo::oop_type; } 928 929 public: 930 // encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll] 931 // an oop in the CodeBlob's oop pool 932 static RelocationHolder spec(int oop_index, int offset = 0) { 933 assert(oop_index > 0, "must be a pool-resident oop"); 934 RelocationHolder rh = newHolder(); 935 new(rh) oop_Relocation(oop_index, offset); 936 return rh; 937 } 938 // an oop in the instruction stream 939 static RelocationHolder spec_for_immediate() { 940 const int oop_index = 0; 941 const int offset = 0; // if you want an offset, use the oop pool 942 RelocationHolder rh = newHolder(); 943 new(rh) oop_Relocation(oop_index, offset); 944 return rh; 945 } 946 947 private: 948 jint _oop_index; // if > 0, index into CodeBlob::oop_at 949 jint _offset; // byte offset to apply to the oop itself 950 951 oop_Relocation(int oop_index, int offset) { 952 _oop_index = oop_index; _offset = offset; 953 } 954 955 friend class RelocIterator; 956 oop_Relocation() { } 957 958 public: 959 int oop_index() { return _oop_index; } 960 int offset() { return _offset; } 961 962 // data is packed in "2_ints" format: [i o] or [Ii Oo] 963 void pack_data_to(CodeSection* dest); 964 void unpack_data(); 965 966 void fix_oop_relocation(); // reasserts oop value 967 968 void verify_oop_relocation(); 969 970 address value() { return (address) oop_addr(); } 971 972 bool oop_is_immediate() { return oop_index() == 0; } 973 974 oop oop_addr(); // addr or &pool[jint_data] 975 oop oop_value(); // oop_addr 976 // Note: oop_value transparently converts Universe::non_oop_word to NULL. 977 }; 978 979 980 // copy of oop_Relocation for now but may delete stuff in both/either 981 class metadata_Relocation : public DataRelocation { 982 relocInfo::relocType type() { return relocInfo::metadata_type; } 983 984 public: 985 // encode in one of these formats: [] [n] [n l] [Nn l] [Nn Ll] 986 // an metadata in the CodeBlob's metadata pool 987 static RelocationHolder spec(int metadata_index, int offset = 0) { 988 assert(metadata_index > 0, "must be a pool-resident metadata"); 989 RelocationHolder rh = newHolder(); 990 new(rh) metadata_Relocation(metadata_index, offset); 991 return rh; 992 } 993 // an metadata in the instruction stream 994 static RelocationHolder spec_for_immediate() { 995 const int metadata_index = 0; 996 const int offset = 0; // if you want an offset, use the metadata pool 997 RelocationHolder rh = newHolder(); 998 new(rh) metadata_Relocation(metadata_index, offset); 999 return rh; 1000 } 1001 1002 private: 1003 jint _metadata_index; // if > 0, index into nmethod::metadata_at 1004 jint _offset; // byte offset to apply to the metadata itself 1005 1006 metadata_Relocation(int metadata_index, int offset) { 1007 _metadata_index = metadata_index; _offset = offset; 1008 } 1009 1010 friend class RelocIterator; 1011 metadata_Relocation() { } 1012 1013 // Fixes a Metadata pointer in the code. Most platforms embeds the 1014 // Metadata pointer in the code at compile time so this is empty 1015 // for them. 1016 void pd_fix_value(address x); 1017 1018 public: 1019 int metadata_index() { return _metadata_index; } 1020 int offset() { return _offset; } 1021 1022 // data is packed in "2_ints" format: [i o] or [Ii Oo] 1023 void pack_data_to(CodeSection dest); 1024 void unpack_data(); 1025 1026 void fix_metadata_relocation(); // reasserts metadata value 1027 1028 void verify_metadata_relocation(); 1029 1030 address value() { return (address) metadata_addr(); } 1031 1032 bool metadata_is_immediate() { return metadata_index() == 0; } 1033 1034 Metadata* metadata_addr(); // addr or &pool[jint_data] 1035 Metadata* metadata_value(); // metadata_addr 1036 // Note: metadata_value transparently converts Universe::non_metadata_word to NULL. 1037 }; 1038 1039 1040 class virtual_call_Relocation : public CallRelocation { 1041 relocInfo::relocType type() { return relocInfo::virtual_call_type; } 1042 1043 public: 1044 // "cached_value" points to the first associated set-oop. 1045 // The oop_limit helps find the last associated set-oop. 1046 // (See comments at the top of this file.) 1047 static RelocationHolder spec(address cached_value) { 1048 RelocationHolder rh = newHolder(); 1049 new(rh) virtual_call_Relocation(cached_value); 1050 return rh; 1051 } 1052 1053 virtual_call_Relocation(address cached_value) { 1054 _cached_value = cached_value; 1055 assert(cached_value != NULL, "first oop address must be specified"); 1056 } 1057 1058 private: 1059 address _cached_value; // location of set-value instruction 1060 1061 friend class RelocIterator; 1062 virtual_call_Relocation() { } 1063 1064 1065 public: 1066 address cached_value(); 1067 1068 // data is packed as scaled offsets in "2_ints" format: [f l] or [Ff Ll] 1069 // oop_limit is set to 0 if the limit falls somewhere within the call. 1070 // When unpacking, a zero oop_limit is taken to refer to the end of the call. 1071 // (This has the effect of bringing in the call's delay slot on SPARC.) 1072 void pack_data_to(CodeSection dest); 1073 void unpack_data(); 1074 1075 void clear_inline_cache(); 1076 }; 1077 1078 1079 class opt_virtual_call_Relocation : public CallRelocation { 1080 relocInfo::relocType type() { return relocInfo::opt_virtual_call_type; } 1081 1082 public: 1083 static RelocationHolder spec() { 1084 RelocationHolder rh = newHolder(); 1085 new(rh) opt_virtual_call_Relocation(); 1086 return rh; 1087 } 1088 1089 private: 1090 friend class RelocIterator; 1091 opt_virtual_call_Relocation() { } 1092 1093 public: 1094 void clear_inline_cache(); 1095 1096 // find the matching static_stub 1097 address static_stub(); 1098 }; 1099 1100 1101 class static_call_Relocation : public CallRelocation { 1102 relocInfo::relocType type() { return relocInfo::static_call_type; } 1103 1104 public: 1105 static RelocationHolder spec() { 1106 RelocationHolder rh = newHolder(); 1107 new(rh) static_call_Relocation(); 1108 return rh; 1109 } 1110 1111 private: 1112 friend class RelocIterator; 1113 static_call_Relocation() { } 1114 1115 public: 1116 void clear_inline_cache(); 1117 1118 // find the matching static_stub 1119 address static_stub(); 1120 }; 1121 1122 class static_stub_Relocation : public Relocation { 1123 relocInfo::relocType type() { return relocInfo::static_stub_type; } 1124 1125 public: 1126 static RelocationHolder spec(address static_call) { 1127 RelocationHolder rh = newHolder(); 1128 new(rh) static_stub_Relocation(static_call); 1129 return rh; 1130 } 1131 1132 private: 1133 address _static_call; // location of corresponding static_call 1134 1135 static_stub_Relocation(address static_call) { 1136 _static_call = static_call; 1137 } 1138 1139 friend class RelocIterator; 1140 static_stub_Relocation() { } 1141 1142 public: 1143 void clear_inline_cache(); 1144 1145 address static_call() { return _static_call; } 1146 1147 // data is packed as a scaled offset in "1_int" format: [c] or [Cc] 1148 void pack_data_to(CodeSection* dest); 1149 void unpack_data(); 1150 }; 1151 1152 class runtime_call_Relocation : public CallRelocation { 1153 relocInfo::relocType type() { return relocInfo::runtime_call_type; } 1154 1155 public: 1156 static RelocationHolder spec() { 1157 RelocationHolder rh = newHolder(); 1158 new(rh) runtime_call_Relocation(); 1159 return rh; 1160 } 1161 1162 private: 1163 friend class RelocIterator; 1164 runtime_call_Relocation() { } 1165 1166 public: 1167 }; 1168 1169 // Trampoline Relocations. 1170 // A trampoline allows to encode a small branch in the code, even if there 1171 // is the chance that this branch can not reach all possible code locations. 1172 // If the relocation finds that a branch is too far for the instruction 1173 // in the code, it can patch it to jump to the trampoline where is 1174 // sufficient space for a far branch. Needed on PPC. 1175 class trampoline_stub_Relocation : public Relocation { 1176 relocInfo::relocType type() { return relocInfo::trampoline_stub_type; } 1177 1178 public: 1179 static RelocationHolder spec(address static_call) { 1180 RelocationHolder rh = newHolder(); 1181 return (new (rh) trampoline_stub_Relocation(static_call)); 1182 } 1183 1184 private: 1185 address _owner; // Address of the NativeCall that owns the trampoline. 1186 1187 trampoline_stub_Relocation(address owner) { 1188 _owner = owner; 1189 } 1190 1191 friend class RelocIterator; 1192 trampoline_stub_Relocation() { } 1193 1194 public: 1195 1196 // Return the address of the NativeCall that owns the trampoline. 1197 address owner() { return _owner; } 1198 1199 void pack_data_to(CodeSection * dest); 1200 void unpack_data(); 1201 1202 // Find the trampoline stub for a call. 1203 static address get_trampoline_for(address call, nmethod* code); 1204 }; 1205 1206 class external_word_Relocation : public DataRelocation { 1207 relocInfo::relocType type() { return relocInfo::external_word_type; } 1208 1209 public: 1210 static RelocationHolder spec(address target) { 1211 assert(target != NULL, "must not be null"); 1212 RelocationHolder rh = newHolder(); 1213 new(rh) external_word_Relocation(target); 1214 return rh; 1215 } 1216 1217 // Use this one where all 32/64 bits of the target live in the code stream. 1218 // The target must be an intptr_t, and must be absolute (not relative). 1219 static RelocationHolder spec_for_immediate() { 1220 RelocationHolder rh = newHolder(); 1221 new(rh) external_word_Relocation(NULL); 1222 return rh; 1223 } 1224 1225 // Some address looking values aren't safe to treat as relocations 1226 // and should just be treated as constants. 1227 static bool can_be_relocated(address target) { 1228 return target != NULL && !is_reloc_index((intptr_t)target); 1229 } 1230 1231 private: 1232 address _target; // address in runtime 1233 1234 external_word_Relocation(address target) { 1235 _target = target; 1236 } 1237 1238 friend class RelocIterator; 1239 external_word_Relocation() { } 1240 1241 public: 1242 // data is packed as a well-known address in "1_int" format: [a] or [Aa] 1243 // The function runtime_address_to_index is used to turn full addresses 1244 // to short indexes, if they are pre-registered by the stub mechanism. 1245 // If the "a" value is 0 (i.e., _target is NULL), the address is stored 1246 // in the code stream. See external_word_Relocation::target(). 1247 void pack_data_to(CodeSection* dest); 1248 void unpack_data(); 1249 1250 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest); 1251 address target(); // if _target==NULL, fetch addr from code stream 1252 address value() { return target(); } 1253 }; 1254 1255 class internal_word_Relocation : public DataRelocation { 1256 relocInfo::relocType type() { return relocInfo::internal_word_type; } 1257 1258 public: 1259 static RelocationHolder spec(address target) { 1260 assert(target != NULL, "must not be null"); 1261 RelocationHolder rh = newHolder(); 1262 new(rh) internal_word_Relocation(target); 1263 return rh; 1264 } 1265 1266 // use this one where all the bits of the target can fit in the code stream: 1267 static RelocationHolder spec_for_immediate() { 1268 RelocationHolder rh = newHolder(); 1269 new(rh) internal_word_Relocation(NULL); 1270 return rh; 1271 } 1272 1273 internal_word_Relocation(address target) { 1274 _target = target; 1275 _section = -1; // self-relative 1276 } 1277 1278 protected: 1279 address _target; // address in CodeBlob 1280 int _section; // section providing base address, if any 1281 1282 friend class RelocIterator; 1283 internal_word_Relocation() { } 1284 1285 // bit-width of LSB field in packed offset, if section >= 0 1286 enum { section_width = 2 }; // must equal CodeBuffer::sect_bits 1287 1288 public: 1289 // data is packed as a scaled offset in "1_int" format: [o] or [Oo] 1290 // If the "o" value is 0 (i.e., _target is NULL), the offset is stored 1291 // in the code stream. See internal_word_Relocation::target(). 1292 // If _section is not -1, it is appended to the low bits of the offset. 1293 void pack_data_to(CodeSection* dest); 1294 void unpack_data(); 1295 1296 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest); 1297 address target(); // if _target==NULL, fetch addr from code stream 1298 int section() { return _section; } 1299 address value() { return target(); } 1300 }; 1301 1302 class section_word_Relocation : public internal_word_Relocation { 1303 relocInfo::relocType type() { return relocInfo::section_word_type; } 1304 1305 public: 1306 static RelocationHolder spec(address target, int section) { 1307 RelocationHolder rh = newHolder(); 1308 new(rh) section_word_Relocation(target, section); 1309 return rh; 1310 } 1311 1312 section_word_Relocation(address target, int section) { 1313 assert(target != NULL, "must not be null"); 1314 assert(section >= 0, "must be a valid section"); 1315 _target = target; 1316 _section = section; 1317 } 1318 1319 //void pack_data_to -- inherited 1320 void unpack_data(); 1321 1322 private: 1323 friend class RelocIterator; 1324 section_word_Relocation() { } 1325 }; 1326 1327 1328 class poll_Relocation : public Relocation { 1329 bool is_data() { return true; } 1330 relocInfo::relocType type() { return relocInfo::poll_type; } 1331 void fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest); 1332 }; 1333 1334 class poll_return_Relocation : public poll_Relocation { 1335 relocInfo::relocType type() { return relocInfo::poll_return_type; } 1336 }; 1337 1338 // We know all the xxx_Relocation classes, so now we can define these: 1339 #define EACH_CASE(name)
1340 inline name##_Relocation* RelocIterator::name##_reloc() {
1341 assert(type() == relocInfo::name##_type, "type must agree");
1342 /* The purpose of the placed "new" is to re-use the same /
1343 /
stack storage for each new iteration. /
1344 name##_Relocation
r = new(_rh) name##_Relocation();
1345 r->set_binding(this);
1346 r->name##_Relocation::unpack_data();
1347 return r;
1348 } 1349 APPLY_TO_RELOCATIONS(EACH_CASE); 1350 #undef EACH_CASE 1351 1352 inline RelocIterator::RelocIterator(nmethod* nm, address begin, address limit) { 1353 initialize(nm, begin, limit); 1354 } 1355 1356 #endif // SHARE_VM_CODE_RELOCINFO_HPP