New src/share/vm/runtime/thread.cpp (original) (raw)

1 /* 2 * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 / 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "classfile/systemDictionary.hpp" 29 #include "classfile/vmSymbols.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/codeCacheExtensions.hpp" 32 #include "code/scopeDesc.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "gc/shared/gcLocker.inline.hpp" 35 #include "gc/shared/workgroup.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/linkResolver.hpp" 38 #include "interpreter/oopMapCache.hpp" 39 #include "jvmtifiles/jvmtiEnv.hpp" 40 #include "memory/metaspaceShared.hpp" 41 #include "memory/oopFactory.hpp" 42 #include "memory/universe.inline.hpp" 43 #include "oops/instanceKlass.hpp" 44 #include "oops/objArrayOop.hpp" 45 #include "oops/oop.inline.hpp" 46 #include "oops/symbol.hpp" 47 #include "oops/verifyOopClosure.hpp" 48 #include "prims/jvm_misc.hpp" 49 #include "prims/jvmtiExport.hpp" 50 #include "prims/jvmtiThreadState.hpp" 51 #include "prims/privilegedStack.hpp" 52 #include "runtime/arguments.hpp" 53 #include "runtime/atomic.inline.hpp" 54 #include "runtime/biasedLocking.hpp" 55 #include "runtime/commandLineFlagConstraintList.hpp" 56 #include "runtime/commandLineFlagRangeList.hpp" 57 #include "runtime/deoptimization.hpp" 58 #include "runtime/fprofiler.hpp" 59 #include "runtime/frame.inline.hpp" 60 #include "runtime/globals.hpp" 61 #include "runtime/init.hpp" 62 #include "runtime/interfaceSupport.hpp" 63 #include "runtime/java.hpp" 64 #include "runtime/javaCalls.hpp" 65 #include "runtime/jniPeriodicChecker.hpp" 66 #include "runtime/memprofiler.hpp" 67 #include "runtime/mutexLocker.hpp" 68 #include "runtime/objectMonitor.hpp" 69 #include "runtime/orderAccess.inline.hpp" 70 #include "runtime/osThread.hpp" 71 #include "runtime/safepoint.hpp" 72 #include "runtime/sharedRuntime.hpp" 73 #include "runtime/statSampler.hpp" 74 #include "runtime/stubRoutines.hpp" 75 #include "runtime/sweeper.hpp" 76 #include "runtime/task.hpp" 77 #include "runtime/thread.inline.hpp" 78 #include "runtime/threadCritical.hpp" 79 #include "runtime/threadLocalStorage.hpp" 80 #include "runtime/vframe.hpp" 81 #include "runtime/vframeArray.hpp" 82 #include "runtime/vframe_hp.hpp" 83 #include "runtime/vmThread.hpp" 84 #include "runtime/vm_operations.hpp" 85 #include "runtime/vm_version.hpp" 86 #include "services/attachListener.hpp" 87 #include "services/management.hpp" 88 #include "services/memTracker.hpp" 89 #include "services/threadService.hpp" 90 #include "trace/traceMacros.hpp" 91 #include "trace/tracing.hpp" 92 #include "utilities/defaultStream.hpp" 93 #include "utilities/dtrace.hpp" 94 #include "utilities/events.hpp" 95 #include "utilities/macros.hpp" 96 #include "utilities/preserveException.hpp" 97 #if INCLUDE_ALL_GCS 98 #include "gc/cms/concurrentMarkSweepThread.hpp" 99 #include "gc/g1/concurrentMarkThread.inline.hpp" 100 #include "gc/parallel/pcTasks.hpp" 101 #endif // INCLUDE_ALL_GCS 102 #if INCLUDE_JVMCI 103 #include "jvmci/jvmciCompiler.hpp" 104 #include "jvmci/jvmciRuntime.hpp" 105 #endif 106 #ifdef COMPILER1 107 #include "c1/c1_Compiler.hpp" 108 #endif 109 #ifdef COMPILER2 110 #include "opto/c2compiler.hpp" 111 #include "opto/idealGraphPrinter.hpp" 112 #endif 113 #if INCLUDE_RTM_OPT 114 #include "runtime/rtmLocking.hpp" 115 #endif 116 117 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC 118 119 #ifdef DTRACE_ENABLED 120 121 // Only bother with this argument setup if dtrace is available 122 123 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START 124 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP 125 126 #define DTRACE_THREAD_PROBE(probe, javathread)
127 {
128 ResourceMark rm(this);
129 int len = 0;
130 const char
name = (javathread)->get_thread_name();
131 len = strlen(name);
132 HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop /
133 (char ) name, len,
134 java_lang_Thread::thread_id((javathread)->threadObj()),
135 (uintptr_t) (javathread)->osthread()->thread_id(),
136 java_lang_Thread::is_daemon((javathread)->threadObj()));
137 } 138 139 #else // ndef DTRACE_ENABLED 140 141 #define DTRACE_THREAD_PROBE(probe, javathread) 142 143 #endif // ndef DTRACE_ENABLED 144 145 146 // Class hierarchy 147 // - Thread 148 // - VMThread 149 // - WatcherThread 150 // - ConcurrentMarkSweepThread 151 // - JavaThread 152 // - CompilerThread 153 154 // ======= Thread ======== 155 // Support for forcing alignment of thread objects for biased locking 156 void
Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) { 157 if (UseBiasedLocking) { 158 const int alignment = markOopDesc::biased_lock_alignment; 159 size_t aligned_size = size + (alignment - sizeof(intptr_t)); 160 void
real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC) 161 : AllocateHeap(aligned_size, flags, CURRENT_PC, 162 AllocFailStrategy::RETURN_NULL); 163 void* aligned_addr = (void*) align_size_up((intptr_t) real_malloc_addr, alignment); 164 assert(((uintptr_t) aligned_addr + (uintptr_t) size) <= 165 ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size), 166 "JavaThread alignment code overflowed allocated storage"); 167 if (TraceBiasedLocking) { 168 if (aligned_addr != real_malloc_addr) { 169 tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT, 170 real_malloc_addr, aligned_addr); 171 } 172 } 173 ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr; 174 return aligned_addr; 175 } else { 176 return throw_excpt? AllocateHeap(size, flags, CURRENT_PC) 177 : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL); 178 } 179 } 180 181 void Thread::operator delete(void* p) { 182 if (UseBiasedLocking) { 183 void* real_malloc_addr = ((Thread*) p)->_real_malloc_address; 184 FreeHeap(real_malloc_addr); 185 } else { 186 FreeHeap(p); 187 } 188 } 189 190 191 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread, 192 // JavaThread 193 194 195 Thread::Thread() { 196 // stack and get_thread 197 set_stack_base(NULL); 198 set_stack_size(0); 199 set_self_raw_id(0); 200 set_lgrp_id(-1); 201 DEBUG_ONLY(clear_suspendible_thread();) 202 203 // allocated data structures 204 set_osthread(NULL); 205 set_resource_area(new (mtThread)ResourceArea()); 206 DEBUG_ONLY(_current_resource_mark = NULL;) 207 set_handle_area(new (mtThread) HandleArea(NULL)); 208 set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true)); 209 set_active_handles(NULL); 210 set_free_handle_block(NULL); 211 set_last_handle_mark(NULL); 212 213 // This initial value ==> never claimed. 214 _oops_do_parity = 0; 215 216 // the handle mark links itself to last_handle_mark 217 new HandleMark(this); 218 219 // plain initialization 220 debug_only(_owned_locks = NULL;) 221 debug_only(_allow_allocation_count = 0;) 222 NOT_PRODUCT(_allow_safepoint_count = 0;) 223 NOT_PRODUCT(_skip_gcalot = false;) 224 _jvmti_env_iteration_count = 0; 225 set_allocated_bytes(0); 226 _vm_operation_started_count = 0; 227 _vm_operation_completed_count = 0; 228 _current_pending_monitor = NULL; 229 _current_pending_monitor_is_from_java = true; 230 _current_waiting_monitor = NULL; 231 _num_nested_signal = 0; 232 omFreeList = NULL; 233 omFreeCount = 0; 234 omFreeProvision = 32; 235 omInUseList = NULL; 236 omInUseCount = 0; 237 238 #ifdef ASSERT 239 _visited_for_critical_count = false; 240 #endif 241 242 _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true, 243 Monitor::_safepoint_check_sometimes); 244 _suspend_flags = 0; 245 246 // thread-specific hashCode stream generator state - Marsaglia shift-xor form 247 _hashStateX = os::random(); 248 _hashStateY = 842502087; 249 _hashStateZ = 0x8767; // (int)(3579807591LL & 0xffff) ; 250 _hashStateW = 273326509; 251 252 _OnTrap = 0; 253 _schedctl = NULL; 254 _Stalled = 0; 255 _TypeTag = 0x2BAD; 256 257 // Many of the following fields are effectively final - immutable 258 // Note that nascent threads can't use the Native Monitor-Mutex 259 // construct until the _MutexEvent is initialized ... 260 // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents 261 // we might instead use a stack of ParkEvents that we could provision on-demand. 262 // The stack would act as a cache to avoid calls to ParkEvent::Allocate() 263 // and ::Release() 264 _ParkEvent = ParkEvent::Allocate(this); 265 _SleepEvent = ParkEvent::Allocate(this); 266 _MutexEvent = ParkEvent::Allocate(this); 267 _MuxEvent = ParkEvent::Allocate(this); 268 269 #ifdef CHECK_UNHANDLED_OOPS 270 if (CheckUnhandledOops) { 271 _unhandled_oops = new UnhandledOops(this); 272 } 273 #endif // CHECK_UNHANDLED_OOPS 274 #ifdef ASSERT 275 if (UseBiasedLocking) { 276 assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed"); 277 assert(this == _real_malloc_address || 278 this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment), 279 "bug in forced alignment of thread objects"); 280 } 281 #endif // ASSERT 282 } 283 284 // Non-inlined version to be used where thread.inline.hpp shouldn't be included. 285 Thread* Thread::current_noinline() { 286 return Thread::current(); 287 } 288 289 void Thread::initialize_thread_local_storage() { 290 // Note: Make sure this method only calls 291 // non-blocking operations. Otherwise, it might not work 292 // with the thread-startup/safepoint interaction. 293 294 // During Java thread startup, safepoint code should allow this 295 // method to complete because it may need to allocate memory to 296 // store information for the new thread. 297 298 // initialize structure dependent on thread local storage 299 ThreadLocalStorage::set_thread(this); 300 } 301 302 void Thread::record_stack_base_and_size() { 303 set_stack_base(os::current_stack_base()); 304 set_stack_size(os::current_stack_size()); 305 if (is_Java_thread()) { 306 ((JavaThread*) this)->set_stack_overflow_limit(); 307 } 308 // CR 7190089: on Solaris, primordial thread's stack is adjusted 309 // in initialize_thread(). Without the adjustment, stack size is 310 // incorrect if stack is set to unlimited (ulimit -s unlimited). 311 // So far, only Solaris has real implementation of initialize_thread(). 312 // 313 // set up any platform-specific state. 314 os::initialize_thread(this); 315 316 #if INCLUDE_NMT 317 // record thread's native stack, stack grows downward 318 address stack_low_addr = stack_base() - stack_size(); 319 MemTracker::record_thread_stack(stack_low_addr, stack_size()); 320 #endif // INCLUDE_NMT 321 } 322 323 324 Thread::Thread() { 325 // Reclaim the objectmonitors from the omFreeList of the moribund thread. 326 ObjectSynchronizer::omFlush(this); 327 328 EVENT_THREAD_DESTRUCT(this); 329 330 // stack_base can be NULL if the thread is never started or exited before 331 // record_stack_base_and_size called. Although, we would like to ensure 332 // that all started threads do call record_stack_base_and_size(), there is 333 // not proper way to enforce that. 334 #if INCLUDE_NMT 335 if (_stack_base != NULL) { 336 address low_stack_addr = stack_base() - stack_size(); 337 MemTracker::release_thread_stack(low_stack_addr, stack_size()); 338 #ifdef ASSERT 339 set_stack_base(NULL); 340 #endif 341 } 342 #endif // INCLUDE_NMT 343 344 // deallocate data structures 345 delete resource_area(); 346 // since the handle marks are using the handle area, we have to deallocated the root 347 // handle mark before deallocating the thread's handle area, 348 assert(last_handle_mark() != NULL, "check we have an element"); 349 delete last_handle_mark(); 350 assert(last_handle_mark() == NULL, "check we have reached the end"); 351 352 // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads. 353 // We NULL out the fields for good hygiene. 354 ParkEvent::Release(_ParkEvent); _ParkEvent = NULL; 355 ParkEvent::Release(_SleepEvent); _SleepEvent = NULL; 356 ParkEvent::Release(_MutexEvent); _MutexEvent = NULL; 357 ParkEvent::Release(_MuxEvent); _MuxEvent = NULL; 358 359 delete handle_area(); 360 delete metadata_handles(); 361 362 // osthread() can be NULL, if creation of thread failed. 363 if (osthread() != NULL) os::free_thread(osthread()); 364 365 delete _SR_lock; 366 367 // clear thread local storage if the Thread is deleting itself 368 if (this == Thread::current()) { 369 ThreadLocalStorage::set_thread(NULL); 370 } else { 371 // In the case where we're not the current thread, invalidate all the 372 // caches in case some code tries to get the current thread or the 373 // thread that was destroyed, and gets stale information. 374 ThreadLocalStorage::invalidate_all(); 375 } 376 CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();) 377 } 378 379 // NOTE: dummy function for assertion purpose. 380 void Thread::run() { 381 ShouldNotReachHere(); 382 } 383 384 #ifdef ASSERT 385 // Private method to check for dangling thread pointer 386 void check_for_dangling_thread_pointer(Thread thread) { 387 assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(), 388 "possibility of dangling Thread pointer"); 389 } 390 #endif 391 392 ThreadPriority Thread::get_priority(const Thread const thread) { 393 ThreadPriority priority; 394 // Can return an error! 395 (void)os::get_priority(thread, priority); 396 assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found"); 397 return priority; 398 } 399 400 void Thread::set_priority(Thread* thread, ThreadPriority priority) { 401 debug_only(check_for_dangling_thread_pointer(thread);) 402 // Can return an error! 403 (void)os::set_priority(thread, priority); 404 } 405 406 407 void Thread::start(Thread* thread) { 408 // Start is different from resume in that its safety is guaranteed by context or 409 // being called from a Java method synchronized on the Thread object. 410 if (!DisableStartThread) { 411 if (thread->is_Java_thread()) { 412 // Initialize the thread state to RUNNABLE before starting this thread. 413 // Can not set it after the thread started because we do not know the 414 // exact thread state at that time. It could be in MONITOR_WAIT or 415 // in SLEEPING or some other state. 416 java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(), 417 java_lang_Thread::RUNNABLE); 418 } 419 os::start_thread(thread); 420 } 421 } 422 423 // Enqueue a VM_Operation to do the job for us - sometime later 424 void Thread::send_async_exception(oop java_thread, oop java_throwable) { 425 VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable); 426 VMThread::execute(vm_stop); 427 } 428 429 430 // Check if an external suspend request has completed (or has been 431 // cancelled). Returns true if the thread is externally suspended and 432 // false otherwise. 433 // 434 // The bits parameter returns information about the code path through 435 // the routine. Useful for debugging: 436 // 437 // set in is_ext_suspend_completed(): 438 // 0x00000001 - routine was entered 439 // 0x00000010 - routine return false at end 440 // 0x00000100 - thread exited (return false) 441 // 0x00000200 - suspend request cancelled (return false) 442 // 0x00000400 - thread suspended (return true) 443 // 0x00001000 - thread is in a suspend equivalent state (return true) 444 // 0x00002000 - thread is native and walkable (return true) 445 // 0x00004000 - thread is native_trans and walkable (needed retry) 446 // 447 // set in wait_for_ext_suspend_completion(): 448 // 0x00010000 - routine was entered 449 // 0x00020000 - suspend request cancelled before loop (return false) 450 // 0x00040000 - thread suspended before loop (return true) 451 // 0x00080000 - suspend request cancelled in loop (return false) 452 // 0x00100000 - thread suspended in loop (return true) 453 // 0x00200000 - suspend not completed during retry loop (return false) 454 455 // Helper class for tracing suspend wait debug bits. 456 // 457 // 0x00000100 indicates that the target thread exited before it could 458 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and 459 // 0x00080000 each indicate a cancelled suspend request so they don't 460 // count as wait failures either. 461 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000) 462 463 class TraceSuspendDebugBits : public StackObj { 464 private: 465 JavaThread * jt; 466 bool is_wait; 467 bool called_by_wait; // meaningful when !is_wait 468 uint32_t * bits; 469 470 public: 471 TraceSuspendDebugBits(JavaThread _jt, bool _is_wait, bool _called_by_wait, 472 uint32_t _bits) { 473 jt = _jt; 474 is_wait = _is_wait; 475 called_by_wait = _called_by_wait; 476 bits = _bits; 477 } 478 479 ~TraceSuspendDebugBits() { 480 if (!is_wait) { 481 #if 1 482 // By default, don't trace bits for is_ext_suspend_completed() calls. 483 // That trace is very chatty. 484 return; 485 #else 486 if (!called_by_wait) { 487 // If tracing for is_ext_suspend_completed() is enabled, then only 488 // trace calls to it from wait_for_ext_suspend_completion() 489 return; 490 } 491 #endif 492 } 493 494 if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) { 495 if (bits != NULL && (bits & DEBUG_FALSE_BITS) != 0) { 496 MutexLocker ml(Threads_lock); // needed for get_thread_name() 497 ResourceMark rm; 498 499 tty->print_cr( 500 "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)", 501 jt->get_thread_name(), bits); 502 503 guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed"); 504 } 505 } 506 } 507 }; 508 #undef DEBUG_FALSE_BITS 509 510 511 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, 512 uint32_t bits) { 513 TraceSuspendDebugBits tsdb(this, false / !is_wait /, called_by_wait, bits); 514 515 bool did_trans_retry = false; // only do thread_in_native_trans retry once 516 bool do_trans_retry; // flag to force the retry 517 518 bits |= 0x00000001; 519 520 do { 521 do_trans_retry = false; 522 523 if (is_exiting()) { 524 // Thread is in the process of exiting. This is always checked 525 // first to reduce the risk of dereferencing a freed JavaThread. 526 bits |= 0x00000100; 527 return false; 528 } 529 530 if (!is_external_suspend()) { 531 // Suspend request is cancelled. This is always checked before 532 // is_ext_suspended() to reduce the risk of a rogue resume 533 // confusing the thread that made the suspend request. 534 bits |= 0x00000200; 535 return false; 536 } 537 538 if (is_ext_suspended()) { 539 // thread is suspended 540 bits |= 0x00000400; 541 return true; 542 } 543 544 // Now that we no longer do hard suspends of threads running 545 // native code, the target thread can be changing thread state 546 // while we are in this routine: 547 // 548 // _thread_in_native -> _thread_in_native_trans -> _thread_blocked 549 // 550 // We save a copy of the thread state as observed at this moment 551 // and make our decision about suspend completeness based on the 552 // copy. This closes the race where the thread state is seen as 553 // _thread_in_native_trans in the if-thread_blocked check, but is 554 // seen as _thread_blocked in if-thread_in_native_trans check. 555 JavaThreadState save_state = thread_state(); 556 557 if (save_state == _thread_blocked && is_suspend_equivalent()) { 558 // If the thread's state is _thread_blocked and this blocking 559 // condition is known to be equivalent to a suspend, then we can 560 // consider the thread to be externally suspended. This means that 561 // the code that sets _thread_blocked has been modified to do 562 // self-suspension if the blocking condition releases. We also 563 // used to check for CONDVAR_WAIT here, but that is now covered by 564 // the _thread_blocked with self-suspension check. 565 // 566 // Return true since we wouldn't be here unless there was still an 567 // external suspend request. 568 bits |= 0x00001000; 569 return true; 570 } else if (save_state == _thread_in_native && frame_anchor()->walkable()) { 571 // Threads running native code will self-suspend on native==>VM/Java 572 // transitions. If its stack is walkable (should always be the case 573 // unless this function is called before the actual java_suspend() 574 // call), then the wait is done. 575 bits |= 0x00002000; 576 return true; 577 } else if (!called_by_wait && !did_trans_retry && 578 save_state == _thread_in_native_trans && 579 frame_anchor()->walkable()) { 580 // The thread is transitioning from thread_in_native to another 581 // thread state. check_safepoint_and_suspend_for_native_trans() 582 // will force the thread to self-suspend. If it hasn't gotten 583 // there yet we may have caught the thread in-between the native 584 // code check above and the self-suspend. Lucky us. If we were 585 // called by wait_for_ext_suspend_completion(), then it 586 // will be doing the retries so we don't have to. 587 // 588 // Since we use the saved thread state in the if-statement above, 589 // there is a chance that the thread has already transitioned to 590 // _thread_blocked by the time we get here. In that case, we will 591 // make a single unnecessary pass through the logic below. This 592 // doesn't hurt anything since we still do the trans retry. 593 594 bits |= 0x00004000; 595 596 // Once the thread leaves thread_in_native_trans for another 597 // thread state, we break out of this retry loop. We shouldn't 598 // need this flag to prevent us from getting back here, but 599 // sometimes paranoia is good. 600 did_trans_retry = true; 601 602 // We wait for the thread to transition to a more usable state. 603 for (int i = 1; i <= SuspendRetryCount; i++) { 604 // We used to do an "os::yield_all(i)" call here with the intention 605 // that yielding would increase on each retry. However, the parameter 606 // is ignored on Linux which means the yield didn't scale up. Waiting 607 // on the SR_lock below provides a much more predictable scale up for 608 // the delay. It also provides a simple/direct point to check for any 609 // safepoint requests from the VMThread 610 611 // temporarily drops SR_lock while doing wait with safepoint check 612 // (if we're a JavaThread - the WatcherThread can also call this) 613 // and increase delay with each retry 614 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 615 616 // check the actual thread state instead of what we saved above 617 if (thread_state() != _thread_in_native_trans) { 618 // the thread has transitioned to another thread state so 619 // try all the checks (except this one) one more time. 620 do_trans_retry = true; 621 break; 622 } 623 } // end retry loop 624 625 626 } 627 } while (do_trans_retry); 628 629 bits |= 0x00000010; 630 return false; 631 } 632 633 // Wait for an external suspend request to complete (or be cancelled). 634 // Returns true if the thread is externally suspended and false otherwise. 635 // 636 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay, 637 uint32_t bits) { 638 TraceSuspendDebugBits tsdb(this, true / is_wait /, 639 false / !called_by_wait /, bits); 640 641 // local flag copies to minimize SR_lock hold time 642 bool is_suspended; 643 bool pending; 644 uint32_t reset_bits; 645 646 // set a marker so is_ext_suspend_completed() knows we are the caller 647 bits |= 0x00010000; 648 649 // We use reset_bits to reinitialize the bits value at the top of 650 // each retry loop. This allows the caller to make use of any 651 // unused bits for their own marking purposes. 652 reset_bits = bits; 653 654 { 655 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 656 is_suspended = is_ext_suspend_completed(true / called_by_wait /, 657 delay, bits); 658 pending = is_external_suspend(); 659 } 660 // must release SR_lock to allow suspension to complete 661 662 if (!pending) { 663 // A cancelled suspend request is the only false return from 664 // is_ext_suspend_completed() that keeps us from entering the 665 // retry loop. 666 bits |= 0x00020000; 667 return false; 668 } 669 670 if (is_suspended) { 671 bits |= 0x00040000; 672 return true; 673 } 674 675 for (int i = 1; i <= retries; i++) { 676 *bits = reset_bits; // reinit to only track last retry 677 678 // We used to do an "os::yield_all(i)" call here with the intention 679 // that yielding would increase on each retry. However, the parameter 680 // is ignored on Linux which means the yield didn't scale up. Waiting 681 // on the SR_lock below provides a much more predictable scale up for 682 // the delay. It also provides a simple/direct point to check for any 683 // safepoint requests from the VMThread 684 685 { 686 MutexLocker ml(SR_lock()); 687 // wait with safepoint check (if we're a JavaThread - the WatcherThread 688 // can also call this) and increase delay with each retry 689 SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay); 690 691 is_suspended = is_ext_suspend_completed(true / called_by_wait /, 692 delay, bits); 693 694 // It is possible for the external suspend request to be cancelled 695 // (by a resume) before the actual suspend operation is completed. 696 // Refresh our local copy to see if we still need to wait. 697 pending = is_external_suspend(); 698 } 699 700 if (!pending) { 701 // A cancelled suspend request is the only false return from 702 // is_ext_suspend_completed() that keeps us from staying in the 703 // retry loop. 704 bits |= 0x00080000; 705 return false; 706 } 707 708 if (is_suspended) { 709 bits |= 0x00100000; 710 return true; 711 } 712 } // end retry loop 713 714 // thread did not suspend after all our retries 715 bits |= 0x00200000; 716 return false; 717 } 718 719 #ifndef PRODUCT 720 void JavaThread::record_jump(address target, address instr, const char file, 721 int line) { 722 723 // This should not need to be atomic as the only way for simultaneous 724 // updates is via interrupts. Even then this should be rare or non-existent 725 // and we don't care that much anyway. 726 727 int index = _jmp_ring_index; 728 _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1); 729 _jmp_ring[index]._target = (intptr_t) target; 730 _jmp_ring[index]._instruction = (intptr_t) instr; 731 _jmp_ring[index]._file = file; 732 _jmp_ring[index]._line = line; 733 } 734 #endif // PRODUCT 735 736 // Called by flat profiler 737 // Callers have already called wait_for_ext_suspend_completion 738 // The assertion for that is currently too complex to put here: 739 bool JavaThread::profile_last_Java_frame(frame _fr) { 740 bool gotframe = false; 741 // self suspension saves needed state. 742 if (has_last_Java_frame() && _anchor.walkable()) { 743 _fr = pd_last_frame(); 744 gotframe = true; 745 } 746 return gotframe; 747 } 748 749 void Thread::interrupt(Thread thread) { 750 debug_only(check_for_dangling_thread_pointer(thread);) 751 os::interrupt(thread); 752 } 753 754 bool Thread::is_interrupted(Thread thread, bool clear_interrupted) { 755 debug_only(check_for_dangling_thread_pointer(thread);) 756 // Note: If clear_interrupted==false, this simply fetches and 757 // returns the value of the field osthread()->interrupted(). 758 return os::is_interrupted(thread, clear_interrupted); 759 } 760 761 762 // GC Support 763 bool Thread::claim_oops_do_par_case(int strong_roots_parity) { 764 jint thread_parity = _oops_do_parity; 765 if (thread_parity != strong_roots_parity) { 766 jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity); 767 if (res == thread_parity) { 768 return true; 769 } else { 770 guarantee(res == strong_roots_parity, "Or else what?"); 771 return false; 772 } 773 } 774 return false; 775 } 776 777 void Thread::oops_do(OopClosure f, CLDClosure cld_f, CodeBlobClosure cf) { 778 active_handles()->oops_do(f); 779 // Do oop for ThreadShadow 780 f->do_oop((oop)&_pending_exception); 781 handle_area()->oops_do(f); 782 } 783 784 void Thread::nmethods_do(CodeBlobClosure cf) { 785 // no nmethods in a generic thread... 786 } 787 788 void Thread::metadata_handles_do(void f(Metadata)) { 789 // Only walk the Handles in Thread. 790 if (metadata_handles() != NULL) { 791 for (int i = 0; i< metadata_handles()->length(); i++) { 792 f(metadata_handles()->at(i)); 793 } 794 } 795 } 796 797 void Thread::print_on(outputStream st) const { 798 // get_priority assumes osthread initialized 799 if (osthread() != NULL) { 800 int os_prio; 801 if (os::get_native_priority(this, &os_prio) == OS_OK) { 802 st->print("os_prio=%d ", os_prio); 803 } 804 st->print("tid=" INTPTR_FORMAT " ", this); 805 ext().print_on(st); 806 osthread()->print_on(st); 807 } 808 debug_only(if (WizardMode) print_owned_locks_on(st);) 809 } 810 811 // Thread::print_on_error() is called by fatal error handler. Don't use 812 // any lock or allocate memory. 813 void Thread::print_on_error(outputStream st, char buf, int buflen) const { 814 if (is_VM_thread()) st->print("VMThread"); 815 else if (is_Compiler_thread()) st->print("CompilerThread"); 816 else if (is_Java_thread()) st->print("JavaThread"); 817 else if (is_GC_task_thread()) st->print("GCTaskThread"); 818 else if (is_Watcher_thread()) st->print("WatcherThread"); 819 else if (is_ConcurrentGC_thread()) st->print("ConcurrentGCThread"); 820 else st->print("Thread"); 821 822 st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]", 823 _stack_base - _stack_size, _stack_base); 824 825 if (osthread()) { 826 st->print(" [id=%d]", osthread()->thread_id()); 827 } 828 } 829 830 #ifdef ASSERT 831 void Thread::print_owned_locks_on(outputStream st) const { 832 Monitor cur = _owned_locks; 833 if (cur == NULL) { 834 st->print(" (no locks) "); 835 } else { 836 st->print_cr(" Locks owned:"); 837 while (cur) { 838 cur->print_on(st); 839 cur = cur->next(); 840 } 841 } 842 } 843 844 static int ref_use_count = 0; 845 846 bool Thread::owns_locks_but_compiled_lock() const { 847 for (Monitor cur = _owned_locks; cur; cur = cur->next()) { 848 if (cur != Compile_lock) return true; 849 } 850 return false; 851 } 852 853 854 #endif 855 856 #ifndef PRODUCT 857 858 // The flag: potential_vm_operation notifies if this particular safepoint state could potential 859 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that 860 // no threads which allow_vm_block's are held 861 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) { 862 // Check if current thread is allowed to block at a safepoint 863 if (!(_allow_safepoint_count == 0)) { 864 fatal("Possible safepoint reached by thread that does not allow it"); 865 } 866 if (is_Java_thread() && ((JavaThread)this)->thread_state() != _thread_in_vm) { 867 fatal("LEAF method calling lock?"); 868 } 869 870 #ifdef ASSERT 871 if (potential_vm_operation && is_Java_thread() 872 && !Universe::is_bootstrapping()) { 873 // Make sure we do not hold any locks that the VM thread also uses. 874 // This could potentially lead to deadlocks 875 for (Monitor cur = _owned_locks; cur; cur = cur->next()) { 876 // Threads_lock is special, since the safepoint synchronization will not start before this is 877 // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock, 878 // since it is used to transfer control between JavaThreads and the VMThread 879 // Do not exclude any locks unless you are absolutely sure it is correct. Ask someone else first! 880 if ((cur->allow_vm_block() && 881 cur != Threads_lock && 882 cur != Compile_lock && // Temporary: should not be necessary when we get separate compilation 883 cur != VMOperationRequest_lock && 884 cur != VMOperationQueue_lock) || 885 cur->rank() == Mutex::special) { 886 fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name())); 887 } 888 } 889 } 890 891 if (GCALotAtAllSafepoints) { 892 // We could enter a safepoint here and thus have a gc 893 InterfaceSupport::check_gc_alot(); 894 } 895 #endif 896 } 897 #endif 898 899 bool Thread::is_in_stack(address adr) const { 900 assert(Thread::current() == this, "is_in_stack can only be called from current thread"); 901 address end = os::current_stack_pointer(); 902 // Allow non Java threads to call this without stack_base 903 if (_stack_base == NULL) return true; 904 if (stack_base() >= adr && adr >= end) return true; 905 906 return false; 907 } 908 909 910 bool Thread::is_in_usable_stack(address adr) const { 911 size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0; 912 size_t usable_stack_size = _stack_size - stack_guard_size; 913 914 return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size)); 915 } 916 917 918 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter 919 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being 920 // used for compilation in the future. If that change is made, the need for these methods 921 // should be revisited, and they should be removed if possible. 922 923 bool Thread::is_lock_owned(address adr) const { 924 return on_local_stack(adr); 925 } 926 927 bool Thread::set_as_starting_thread() { 928 // NOTE: this must be called inside the main thread. 929 return os::create_main_thread((JavaThread)this); 930 } 931 932 static void initialize_class(Symbol class_name, TRAPS) { 933 Klass klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK); 934 InstanceKlass::cast(klass)->initialize(CHECK); 935 } 936 937 938 // Creates the initial ThreadGroup 939 static Handle create_initial_thread_group(TRAPS) { 940 Klass k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH); 941 instanceKlassHandle klass (THREAD, k); 942 943 Handle system_instance = klass->allocate_instance_handle(CHECK_NH); 944 { 945 JavaValue result(T_VOID); 946 JavaCalls::call_special(&result, 947 system_instance, 948 klass, 949 vmSymbols::object_initializer_name(), 950 vmSymbols::void_method_signature(), 951 CHECK_NH); 952 } 953 Universe::set_system_thread_group(system_instance()); 954 955 Handle main_instance = klass->allocate_instance_handle(CHECK_NH); 956 { 957 JavaValue result(T_VOID); 958 Handle string = java_lang_String::create_from_str("main", CHECK_NH); 959 JavaCalls::call_special(&result, 960 main_instance, 961 klass, 962 vmSymbols::object_initializer_name(), 963 vmSymbols::threadgroup_string_void_signature(), 964 system_instance, 965 string, 966 CHECK_NH); 967 } 968 return main_instance; 969 } 970 971 // Creates the initial Thread 972 static oop create_initial_thread(Handle thread_group, JavaThread thread, 973 TRAPS) { 974 Klass k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL); 975 instanceKlassHandle klass (THREAD, k); 976 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL); 977 978 java_lang_Thread::set_thread(thread_oop(), thread); 979 java_lang_Thread::set_priority(thread_oop(), NormPriority); 980 thread->set_threadObj(thread_oop()); 981 982 Handle string = java_lang_String::create_from_str("main", CHECK_NULL); 983 984 JavaValue result(T_VOID); 985 JavaCalls::call_special(&result, thread_oop, 986 klass, 987 vmSymbols::object_initializer_name(), 988 vmSymbols::threadgroup_string_void_signature(), 989 thread_group, 990 string, 991 CHECK_NULL); 992 return thread_oop(); 993 } 994 995 static void call_initializeSystemClass(TRAPS) { 996 Klass k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 997 instanceKlassHandle klass (THREAD, k); 998 999 JavaValue result(T_VOID); 1000 JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(), 1001 vmSymbols::void_method_signature(), CHECK); 1002 } 1003 1004 char java_runtime_name[128] = ""; 1005 char java_runtime_version[128] = ""; 1006 1007 // extract the JRE name from sun.misc.Version.java_runtime_name 1008 static const char get_java_runtime_name(TRAPS) { 1009 Klass k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1010 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1011 fieldDescriptor fd; 1012 bool found = k != NULL && 1013 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(), 1014 vmSymbols::string_signature(), &fd); 1015 if (found) { 1016 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1017 if (name_oop == NULL) { 1018 return NULL; 1019 } 1020 const char name = java_lang_String::as_utf8_string(name_oop, 1021 java_runtime_name, 1022 sizeof(java_runtime_name)); 1023 return name; 1024 } else { 1025 return NULL; 1026 } 1027 } 1028 1029 // extract the JRE version from sun.misc.Version.java_runtime_version 1030 static const char* get_java_runtime_version(TRAPS) { 1031 Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(), 1032 Handle(), Handle(), CHECK_AND_CLEAR_NULL); 1033 fieldDescriptor fd; 1034 bool found = k != NULL && 1035 InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(), 1036 vmSymbols::string_signature(), &fd); 1037 if (found) { 1038 oop name_oop = k->java_mirror()->obj_field(fd.offset()); 1039 if (name_oop == NULL) { 1040 return NULL; 1041 } 1042 const char* name = java_lang_String::as_utf8_string(name_oop, 1043 java_runtime_version, 1044 sizeof(java_runtime_version)); 1045 return name; 1046 } else { 1047 return NULL; 1048 } 1049 } 1050 1051 // General purpose hook into Java code, run once when the VM is initialized. 1052 // The Java library method itself may be changed independently from the VM. 1053 static void call_postVMInitHook(TRAPS) { 1054 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD); 1055 instanceKlassHandle klass (THREAD, k); 1056 if (klass.not_null()) { 1057 JavaValue result(T_VOID); 1058 JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(), 1059 vmSymbols::void_method_signature(), 1060 CHECK); 1061 } 1062 } 1063 1064 static void reset_vm_info_property(TRAPS) { 1065 // the vm info string 1066 ResourceMark rm(THREAD); 1067 const char vm_info = VM_Version::vm_info_string(); 1068 1069 // java.lang.System class 1070 Klass k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK); 1071 instanceKlassHandle klass (THREAD, k); 1072 1073 // setProperty arguments 1074 Handle key_str = java_lang_String::create_from_str("java.vm.info", CHECK); 1075 Handle value_str = java_lang_String::create_from_str(vm_info, CHECK); 1076 1077 // return value 1078 JavaValue r(T_OBJECT); 1079 1080 // public static String setProperty(String key, String value); 1081 JavaCalls::call_static(&r, 1082 klass, 1083 vmSymbols::setProperty_name(), 1084 vmSymbols::string_string_string_signature(), 1085 key_str, 1086 value_str, 1087 CHECK); 1088 } 1089 1090 1091 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name, 1092 bool daemon, TRAPS) { 1093 assert(thread_group.not_null(), "thread group should be specified"); 1094 assert(threadObj() == NULL, "should only create Java thread object once"); 1095 1096 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK); 1097 instanceKlassHandle klass (THREAD, k); 1098 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK); 1099 1100 java_lang_Thread::set_thread(thread_oop(), this); 1101 java_lang_Thread::set_priority(thread_oop(), NormPriority); 1102 set_threadObj(thread_oop()); 1103 1104 JavaValue result(T_VOID); 1105 if (thread_name != NULL) { 1106 Handle name = java_lang_String::create_from_str(thread_name, CHECK); 1107 // Thread gets assigned specified name and null target 1108 JavaCalls::call_special(&result, 1109 thread_oop, 1110 klass, 1111 vmSymbols::object_initializer_name(), 1112 vmSymbols::threadgroup_string_void_signature(), 1113 thread_group, // Argument 1 1114 name, // Argument 2 1115 THREAD); 1116 } else { 1117 // Thread gets assigned name "Thread-nnn" and null target 1118 // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument) 1119 JavaCalls::call_special(&result, 1120 thread_oop, 1121 klass, 1122 vmSymbols::object_initializer_name(), 1123 vmSymbols::threadgroup_runnable_void_signature(), 1124 thread_group, // Argument 1 1125 Handle(), // Argument 2 1126 THREAD); 1127 } 1128 1129 1130 if (daemon) { 1131 java_lang_Thread::set_daemon(thread_oop()); 1132 } 1133 1134 if (HAS_PENDING_EXCEPTION) { 1135 return; 1136 } 1137 1138 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass()); 1139 Handle threadObj(THREAD, this->threadObj()); 1140 1141 JavaCalls::call_special(&result, 1142 thread_group, 1143 group, 1144 vmSymbols::add_method_name(), 1145 vmSymbols::thread_void_signature(), 1146 threadObj, // Arg 1 1147 THREAD); 1148 } 1149 1150 // NamedThread -- non-JavaThread subclasses with multiple 1151 // uniquely named instances should derive from this. 1152 NamedThread::NamedThread() : Thread() { 1153 _name = NULL; 1154 _processed_thread = NULL; 1155 } 1156 1157 NamedThread::NamedThread() { 1158 if (_name != NULL) { 1159 FREE_C_HEAP_ARRAY(char, _name); 1160 _name = NULL; 1161 } 1162 } 1163 1164 void NamedThread::set_name(const char* format, ...) { 1165 guarantee(_name == NULL, "Only get to set name once."); 1166 _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread); 1167 guarantee(_name != NULL, "alloc failure"); 1168 va_list ap; 1169 va_start(ap, format); 1170 jio_vsnprintf(_name, max_name_len, format, ap); 1171 va_end(ap); 1172 } 1173 1174 void NamedThread::initialize_named_thread() { 1175 set_native_thread_name(name()); 1176 } 1177 1178 void NamedThread::print_on(outputStream* st) const { 1179 st->print(""%s" ", name()); 1180 Thread::print_on(st); 1181 st->cr(); 1182 } 1183 1184 1185 // ======= WatcherThread ======== 1186 1187 // The watcher thread exists to simulate timer interrupts. It should 1188 // be replaced by an abstraction over whatever native support for 1189 // timer interrupts exists on the platform. 1190 1191 WatcherThread* WatcherThread::_watcher_thread = NULL; 1192 bool WatcherThread::_startable = false; 1193 volatile bool WatcherThread::_should_terminate = false; 1194 1195 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) { 1196 assert(watcher_thread() == NULL, "we can only allocate one WatcherThread"); 1197 if (os::create_thread(this, os::watcher_thread)) { 1198 _watcher_thread = this; 1199 1200 // Set the watcher thread to the highest OS priority which should not be 1201 // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY 1202 // is created. The only normal thread using this priority is the reference 1203 // handler thread, which runs for very short intervals only. 1204 // If the VMThread's priority is not lower than the WatcherThread profiling 1205 // will be inaccurate. 1206 os::set_priority(this, MaxPriority); 1207 if (!DisableStartThread) { 1208 os::start_thread(this); 1209 } 1210 } 1211 } 1212 1213 int WatcherThread::sleep() const { 1214 // The WatcherThread does not participate in the safepoint protocol 1215 // for the PeriodicTask_lock because it is not a JavaThread. 1216 MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag); 1217 1218 if (_should_terminate) { 1219 // check for termination before we do any housekeeping or wait 1220 return 0; // we did not sleep. 1221 } 1222 1223 // remaining will be zero if there are no tasks, 1224 // causing the WatcherThread to sleep until a task is 1225 // enrolled 1226 int remaining = PeriodicTask::time_to_wait(); 1227 int time_slept = 0; 1228 1229 // we expect this to timeout - we only ever get unparked when 1230 // we should terminate or when a new task has been enrolled 1231 OSThreadWaitState osts(this->osthread(), false /* not Object.wait() /); 1232 1233 jlong time_before_loop = os::javaTimeNanos(); 1234 1235 while (true) { 1236 bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, 1237 remaining); 1238 jlong now = os::javaTimeNanos(); 1239 1240 if (remaining == 0) { 1241 // if we didn't have any tasks we could have waited for a long time 1242 // consider the time_slept zero and reset time_before_loop 1243 time_slept = 0; 1244 time_before_loop = now; 1245 } else { 1246 // need to recalculate since we might have new tasks in _tasks 1247 time_slept = (int) ((now - time_before_loop) / 1000000); 1248 } 1249 1250 // Change to task list or spurious wakeup of some kind 1251 if (timedout || _should_terminate) { 1252 break; 1253 } 1254 1255 remaining = PeriodicTask::time_to_wait(); 1256 if (remaining == 0) { 1257 // Last task was just disenrolled so loop around and wait until 1258 // another task gets enrolled 1259 continue; 1260 } 1261 1262 remaining -= time_slept; 1263 if (remaining <= 0) { 1264 break; 1265 } 1266 } 1267 1268 return time_slept; 1269 } 1270 1271 void WatcherThread::run() { 1272 assert(this == watcher_thread(), "just checking"); 1273 1274 this->record_stack_base_and_size(); 1275 this->initialize_thread_local_storage(); 1276 this->set_native_thread_name(this->name()); 1277 this->set_active_handles(JNIHandleBlock::allocate_block()); 1278 while (true) { 1279 assert(watcher_thread() == Thread::current(), "thread consistency check"); 1280 assert(watcher_thread() == this, "thread consistency check"); 1281 1282 // Calculate how long it'll be until the next PeriodicTask work 1283 // should be done, and sleep that amount of time. 1284 int time_waited = sleep(); 1285 1286 if (is_error_reported()) { 1287 // A fatal error has happened, the error handler(VMError::report_and_die) 1288 // should abort JVM after creating an error log file. However in some 1289 // rare cases, the error handler itself might deadlock. Here we try to 1290 // kill JVM if the fatal error handler fails to abort in 2 minutes. 1291 // 1292 // This code is in WatcherThread because WatcherThread wakes up 1293 // periodically so the fatal error handler doesn't need to do anything; 1294 // also because the WatcherThread is less likely to crash than other 1295 // threads. 1296 1297 for (;;) { 1298 if (!ShowMessageBoxOnError 1299 && (OnError == NULL || OnError[0] == '\0') 1300 && Arguments::abort_hook() == NULL) { 1301 os::sleep(this, ErrorLogTimeout * 60 * 1000, false); 1302 fdStream err(defaultStream::output_fd()); 1303 err.print_raw_cr("# [ timer expired, abort... ]"); 1304 // skip atexit/vm_exit/vm_abort hooks 1305 os::die(); 1306 } 1307 1308 // Wake up 5 seconds later, the fatal handler may reset OnError or 1309 // ShowMessageBoxOnError when it is ready to abort. 1310 os::sleep(this, 5 * 1000, false); 1311 } 1312 } 1313 1314 if (_should_terminate) { 1315 // check for termination before posting the next tick 1316 break; 1317 } 1318 1319 PeriodicTask::real_time_tick(time_waited); 1320 } 1321 1322 // Signal that it is terminated 1323 { 1324 MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag); 1325 _watcher_thread = NULL; 1326 Terminator_lock->notify(); 1327 } 1328 1329 // Thread destructor usually does this.. 1330 ThreadLocalStorage::set_thread(NULL); 1331 } 1332 1333 void WatcherThread::start() { 1334 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1335 1336 if (watcher_thread() == NULL && _startable) { 1337 _should_terminate = false; 1338 // Create the single instance of WatcherThread 1339 new WatcherThread(); 1340 } 1341 } 1342 1343 void WatcherThread::make_startable() { 1344 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1345 _startable = true; 1346 } 1347 1348 void WatcherThread::stop() { 1349 { 1350 // Follow normal safepoint aware lock enter protocol since the 1351 // WatcherThread is stopped by another JavaThread. 1352 MutexLocker ml(PeriodicTask_lock); 1353 _should_terminate = true; 1354 1355 WatcherThread watcher = watcher_thread(); 1356 if (watcher != NULL) { 1357 // unpark the WatcherThread so it can see that it should terminate 1358 watcher->unpark(); 1359 } 1360 } 1361 1362 MutexLocker mu(Terminator_lock); 1363 1364 while (watcher_thread() != NULL) { 1365 // This wait should make safepoint checks, wait without a timeout, 1366 // and wait as a suspend-equivalent condition. 1367 // 1368 // Note: If the FlatProfiler is running, then this thread is waiting 1369 // for the WatcherThread to terminate and the WatcherThread, via the 1370 // FlatProfiler task, is waiting for the external suspend request on 1371 // this thread to complete. wait_for_ext_suspend_completion() will 1372 // eventually timeout, but that takes time. Making this wait a 1373 // suspend-equivalent condition solves that timeout problem. 1374 // 1375 Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 1376 Mutex::_as_suspend_equivalent_flag); 1377 } 1378 } 1379 1380 void WatcherThread::unpark() { 1381 assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required"); 1382 PeriodicTask_lock->notify(); 1383 } 1384 1385 void WatcherThread::print_on(outputStream* st) const { 1386 st->print(""%s" ", name()); 1387 Thread::print_on(st); 1388 st->cr(); 1389 } 1390 1391 // ======= JavaThread ======== 1392 1393 #if INCLUDE_JVMCI 1394 1395 jlong* JavaThread::_jvmci_old_thread_counters; 1396 1397 bool jvmci_counters_include(JavaThread* thread) { 1398 oop threadObj = thread->threadObj(); 1399 return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread(); 1400 } 1401 1402 void JavaThread::collect_counters(typeArrayOop array) { 1403 if (JVMCICounterSize > 0) { 1404 MutexLocker tl(Threads_lock); 1405 for (int i = 0; i < array->length(); i++) { 1406 array->long_at_put(i, _jvmci_old_thread_counters[i]); 1407 } 1408 for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) { 1409 if (jvmci_counters_include(tp)) { 1410 for (int i = 0; i < array->length(); i++) { 1411 array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]); 1412 } 1413 } 1414 } 1415 } 1416 } 1417 1418 #endif 1419 1420 // A JavaThread is a normal Java thread 1421 1422 void JavaThread::initialize() { 1423 // Initialize fields 1424 1425 // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids) 1426 set_claimed_par_id(UINT_MAX); 1427 1428 set_saved_exception_pc(NULL); 1429 set_threadObj(NULL); 1430 _anchor.clear(); 1431 set_entry_point(NULL); 1432 set_jni_functions(jni_functions()); 1433 set_callee_target(NULL); 1434 set_vm_result(NULL); 1435 set_vm_result_2(NULL); 1436 set_vframe_array_head(NULL); 1437 set_vframe_array_last(NULL); 1438 set_deferred_locals(NULL); 1439 set_deopt_mark(NULL); 1440 set_deopt_nmethod(NULL); 1441 clear_must_deopt_id(); 1442 set_monitor_chunks(NULL); 1443 set_next(NULL); 1444 set_thread_state(_thread_new); 1445 _terminated = _not_terminated; 1446 _privileged_stack_top = NULL; 1447 _array_for_gc = NULL; 1448 _suspend_equivalent = false; 1449 _in_deopt_handler = 0; 1450 _doing_unsafe_access = false; 1451 _stack_guard_state = stack_guard_unused; 1452 #if INCLUDE_JVMCI 1453 _pending_monitorenter = false; 1454 _pending_deoptimization = -1; 1455 _pending_failed_speculation = NULL; 1456 _pending_transfer_to_interpreter = false; 1457 _jvmci._alternate_call_target = NULL; 1458 assert(_jvmci._implicit_exception_pc == NULL, "must be"); 1459 if (JVMCICounterSize > 0) { 1460 _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal); 1461 memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize); 1462 } else { 1463 _jvmci_counters = NULL; 1464 } 1465 #endif 1466 (void)const_cast<oop&>(_exception_oop = oop(NULL)); 1467 _exception_pc = 0; 1468 _exception_handler_pc = 0; 1469 _is_method_handle_return = 0; 1470 _jvmti_thread_state= NULL; 1471 _should_post_on_exceptions_flag = JNI_FALSE; 1472 _jvmti_get_loaded_classes_closure = NULL; 1473 _interp_only_mode = 0; 1474 _special_runtime_exit_condition = _no_async_condition; 1475 _pending_async_exception = NULL; 1476 _thread_stat = NULL; 1477 _thread_stat = new ThreadStatistics(); 1478 _blocked_on_compilation = false; 1479 _jni_active_critical = 0; 1480 _pending_jni_exception_check_fn = NULL; 1481 _do_not_unlock_if_synchronized = false; 1482 _cached_monitor_info = NULL; 1483 _parker = Parker::Allocate(this); 1484 1485 #ifndef PRODUCT 1486 _jmp_ring_index = 0; 1487 for (int ji = 0; ji < jump_ring_buffer_size; ji++) { 1488 record_jump(NULL, NULL, NULL, 0); 1489 } 1490 #endif // PRODUCT 1491 1492 set_thread_profiler(NULL); 1493 if (FlatProfiler::is_active()) { 1494 // This is where we would decide to either give each thread it's own profiler 1495 // or use one global one from FlatProfiler, 1496 // or up to some count of the number of profiled threads, etc. 1497 ThreadProfiler* pp = new ThreadProfiler(); 1498 pp->engage(); 1499 set_thread_profiler(pp); 1500 } 1501 1502 // Setup safepoint state info for this thread 1503 ThreadSafepointState::create(this); 1504 1505 debug_only(_java_call_counter = 0); 1506 1507 // JVMTI PopFrame support 1508 _popframe_condition = popframe_inactive; 1509 _popframe_preserved_args = NULL; 1510 _popframe_preserved_args_size = 0; 1511 _frames_to_pop_failed_realloc = 0; 1512 1513 pd_initialize(); 1514 } 1515 1516 #if INCLUDE_ALL_GCS 1517 SATBMarkQueueSet JavaThread::_satb_mark_queue_set; 1518 DirtyCardQueueSet JavaThread::_dirty_card_queue_set; 1519 #endif // INCLUDE_ALL_GCS 1520 1521 JavaThread::JavaThread(bool is_attaching_via_jni) : 1522 Thread() 1523 #if INCLUDE_ALL_GCS 1524 , _satb_mark_queue(&_satb_mark_queue_set), 1525 _dirty_card_queue(&_dirty_card_queue_set) 1526 #endif // INCLUDE_ALL_GCS 1527 { 1528 initialize(); 1529 if (is_attaching_via_jni) { 1530 _jni_attach_state = _attaching_via_jni; 1531 } else { 1532 _jni_attach_state = _not_attaching_via_jni; 1533 } 1534 assert(deferred_card_mark().is_empty(), "Default MemRegion ctor"); 1535 } 1536 1537 bool JavaThread::reguard_stack(address cur_sp) { 1538 if (_stack_guard_state != stack_guard_yellow_disabled) { 1539 return true; // Stack already guarded or guard pages not needed. 1540 } 1541 1542 if (register_stack_overflow()) { 1543 // For those architectures which have separate register and 1544 // memory stacks, we must check the register stack to see if 1545 // it has overflowed. 1546 return false; 1547 } 1548 1549 // Java code never executes within the yellow zone: the latter is only 1550 // there to provoke an exception during stack banging. If java code 1551 // is executing there, either StackShadowPages should be larger, or 1552 // some exception code in c1, c2 or the interpreter isn't unwinding 1553 // when it should. 1554 guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages"); 1555 1556 enable_stack_yellow_zone(); 1557 return true; 1558 } 1559 1560 bool JavaThread::reguard_stack(void) { 1561 return reguard_stack(os::current_stack_pointer()); 1562 } 1563 1564 1565 void JavaThread::block_if_vm_exited() { 1566 if (_terminated == _vm_exited) { 1567 // _vm_exited is set at safepoint, and Threads_lock is never released 1568 // we will block here forever 1569 Threads_lock->lock_without_safepoint_check(); 1570 ShouldNotReachHere(); 1571 } 1572 } 1573 1574 1575 // Remove this ifdef when C1 is ported to the compiler interface. 1576 static void compiler_thread_entry(JavaThread* thread, TRAPS); 1577 static void sweeper_thread_entry(JavaThread* thread, TRAPS); 1578 1579 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) : 1580 Thread() 1581 #if INCLUDE_ALL_GCS 1582 , _satb_mark_queue(&_satb_mark_queue_set), 1583 _dirty_card_queue(&_dirty_card_queue_set) 1584 #endif // INCLUDE_ALL_GCS 1585 { 1586 initialize(); 1587 _jni_attach_state = _not_attaching_via_jni; 1588 set_entry_point(entry_point); 1589 // Create the native thread itself. 1590 // %note runtime_23 1591 os::ThreadType thr_type = os::java_thread; 1592 thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread : 1593 os::java_thread; 1594 os::create_thread(this, thr_type, stack_sz); 1595 // The _osthread may be NULL here because we ran out of memory (too many threads active). 1596 // We need to throw and OutOfMemoryError - however we cannot do this here because the caller 1597 // may hold a lock and all locks must be unlocked before throwing the exception (throwing 1598 // the exception consists of creating the exception object & initializing it, initialization 1599 // will leave the VM via a JavaCall and then all locks must be unlocked). 1600 // 1601 // The thread is still suspended when we reach here. Thread must be explicit started 1602 // by creator! Furthermore, the thread must also explicitly be added to the Threads list 1603 // by calling Threads:add. The reason why this is not done here, is because the thread 1604 // object must be fully initialized (take a look at JVM_Start) 1605 } 1606 1607 JavaThread::~JavaThread() { 1608 1609 // JSR166 -- return the parker to the free list 1610 Parker::Release(_parker); 1611 _parker = NULL; 1612 1613 // Free any remaining previous UnrollBlock 1614 vframeArray* old_array = vframe_array_last(); 1615 1616 if (old_array != NULL) { 1617 Deoptimization::UnrollBlock* old_info = old_array->unroll_block(); 1618 old_array->set_unroll_block(NULL); 1619 delete old_info; 1620 delete old_array; 1621 } 1622 1623 GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals(); 1624 if (deferred != NULL) { 1625 // This can only happen if thread is destroyed before deoptimization occurs. 1626 assert(deferred->length() != 0, "empty array!"); 1627 do { 1628 jvmtiDeferredLocalVariableSet* dlv = deferred->at(0); 1629 deferred->remove_at(0); 1630 // individual jvmtiDeferredLocalVariableSet are CHeapObj's 1631 delete dlv; 1632 } while (deferred->length() != 0); 1633 delete deferred; 1634 } 1635 1636 // All Java related clean up happens in exit 1637 ThreadSafepointState::destroy(this); 1638 if (_thread_profiler != NULL) delete _thread_profiler; 1639 if (_thread_stat != NULL) delete _thread_stat; 1640 1641 #if INCLUDE_JVMCI 1642 if (JVMCICounterSize > 0) { 1643 if (jvmci_counters_include(this)) { 1644 for (int i = 0; i < JVMCICounterSize; i++) { 1645 _jvmci_old_thread_counters[i] += _jvmci_counters[i]; 1646 } 1647 } 1648 FREE_C_HEAP_ARRAY(jlong, _jvmci_counters); 1649 } 1650 #endif 1651 } 1652 1653 1654 // The first routine called by a new Java thread 1655 void JavaThread::run() { 1656 // initialize thread-local alloc buffer related fields 1657 this->initialize_tlab(); 1658 1659 // used to test validity of stack trace backs 1660 this->record_base_of_stack_pointer(); 1661 1662 // Record real stack base and size. 1663 this->record_stack_base_and_size(); 1664 1665 // Initialize thread local storage; set before calling MutexLocker 1666 this->initialize_thread_local_storage(); 1667 1668 this->create_stack_guard_pages(); 1669 1670 this->cache_global_variables(); 1671 1672 // Thread is now sufficient initialized to be handled by the safepoint code as being 1673 // in the VM. Change thread state from _thread_new to _thread_in_vm 1674 ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm); 1675 1676 assert(JavaThread::current() == this, "sanity check"); 1677 assert(!Thread::current()->owns_locks(), "sanity check"); 1678 1679 DTRACE_THREAD_PROBE(start, this); 1680 1681 // This operation might block. We call that after all safepoint checks for a new thread has 1682 // been completed. 1683 this->set_active_handles(JNIHandleBlock::allocate_block()); 1684 1685 if (JvmtiExport::should_post_thread_life()) { 1686 JvmtiExport::post_thread_start(this); 1687 } 1688 1689 EventThreadStart event; 1690 if (event.should_commit()) { 1691 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1692 event.commit(); 1693 } 1694 1695 // We call another function to do the rest so we are sure that the stack addresses used 1696 // from there will be lower than the stack base just computed 1697 thread_main_inner(); 1698 1699 // Note, thread is no longer valid at this point! 1700 } 1701 1702 1703 void JavaThread::thread_main_inner() { 1704 assert(JavaThread::current() == this, "sanity check"); 1705 assert(this->threadObj() != NULL, "just checking"); 1706 1707 // Execute thread entry point unless this thread has a pending exception 1708 // or has been stopped before starting. 1709 // Note: Due to JVM_StopThread we can have pending exceptions already! 1710 if (!this->has_pending_exception() && 1711 !java_lang_Thread::is_stillborn(this->threadObj())) { 1712 { 1713 ResourceMark rm(this); 1714 this->set_native_thread_name(this->get_thread_name()); 1715 } 1716 HandleMark hm(this); 1717 this->entry_point()(this, this); 1718 } 1719 1720 DTRACE_THREAD_PROBE(stop, this); 1721 1722 this->exit(false); 1723 delete this; 1724 } 1725 1726 1727 static void ensure_join(JavaThread* thread) { 1728 // We do not need to grap the Threads_lock, since we are operating on ourself. 1729 Handle threadObj(thread, thread->threadObj()); 1730 assert(threadObj.not_null(), "java thread object must exist"); 1731 ObjectLocker lock(threadObj, thread); 1732 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1733 thread->clear_pending_exception(); 1734 // Thread is exiting. So set thread_status field in java.lang.Thread class to TERMINATED. 1735 java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED); 1736 // Clear the native thread instance - this makes isAlive return false and allows the join() 1737 // to complete once we've done the notify_all below 1738 java_lang_Thread::set_thread(threadObj(), NULL); 1739 lock.notify_all(thread); 1740 // Ignore pending exception (ThreadDeath), since we are exiting anyway 1741 thread->clear_pending_exception(); 1742 } 1743 1744 1745 // For any new cleanup additions, please check to see if they need to be applied to 1746 // cleanup_failed_attach_current_thread as well. 1747 void JavaThread::exit(bool destroy_vm, ExitType exit_type) { 1748 assert(this == JavaThread::current(), "thread consistency check"); 1749 1750 HandleMark hm(this); 1751 Handle uncaught_exception(this, this->pending_exception()); 1752 this->clear_pending_exception(); 1753 Handle threadObj(this, this->threadObj()); 1754 assert(threadObj.not_null(), "Java thread object should be created"); 1755 1756 if (get_thread_profiler() != NULL) { 1757 get_thread_profiler()->disengage(); 1758 ResourceMark rm; 1759 get_thread_profiler()->print(get_thread_name()); 1760 } 1761 1762 1763 // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place 1764 { 1765 EXCEPTION_MARK; 1766 1767 CLEAR_PENDING_EXCEPTION; 1768 } 1769 if (!destroy_vm) { 1770 if (uncaught_exception.not_null()) { 1771 EXCEPTION_MARK; 1772 // Call method Thread.dispatchUncaughtException(). 1773 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1774 JavaValue result(T_VOID); 1775 JavaCalls::call_virtual(&result, 1776 threadObj, thread_klass, 1777 vmSymbols::dispatchUncaughtException_name(), 1778 vmSymbols::throwable_void_signature(), 1779 uncaught_exception, 1780 THREAD); 1781 if (HAS_PENDING_EXCEPTION) { 1782 ResourceMark rm(this); 1783 jio_fprintf(defaultStream::error_stream(), 1784 "\nException: %s thrown from the UncaughtExceptionHandler" 1785 " in thread "%s"\n", 1786 pending_exception()->klass()->external_name(), 1787 get_thread_name()); 1788 CLEAR_PENDING_EXCEPTION; 1789 } 1790 } 1791 1792 // Called before the java thread exit since we want to read info 1793 // from java_lang_Thread object 1794 EventThreadEnd event; 1795 if (event.should_commit()) { 1796 event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj())); 1797 event.commit(); 1798 } 1799 1800 // Call after last event on thread 1801 EVENT_THREAD_EXIT(this); 1802 1803 // Call Thread.exit(). We try 3 times in case we got another Thread.stop during 1804 // the execution of the method. If that is not enough, then we don't really care. Thread.stop 1805 // is deprecated anyhow. 1806 if (!is_Compiler_thread()) { 1807 int count = 3; 1808 while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) { 1809 EXCEPTION_MARK; 1810 JavaValue result(T_VOID); 1811 KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass()); 1812 JavaCalls::call_virtual(&result, 1813 threadObj, thread_klass, 1814 vmSymbols::exit_method_name(), 1815 vmSymbols::void_method_signature(), 1816 THREAD); 1817 CLEAR_PENDING_EXCEPTION; 1818 } 1819 } 1820 // notify JVMTI 1821 if (JvmtiExport::should_post_thread_life()) { 1822 JvmtiExport::post_thread_end(this); 1823 } 1824 1825 // We have notified the agents that we are exiting, before we go on, 1826 // we must check for a pending external suspend request and honor it 1827 // in order to not surprise the thread that made the suspend request. 1828 while (true) { 1829 { 1830 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 1831 if (!is_external_suspend()) { 1832 set_terminated(_thread_exiting); 1833 ThreadService::current_thread_exiting(this); 1834 break; 1835 } 1836 // Implied else: 1837 // Things get a little tricky here. We have a pending external 1838 // suspend request, but we are holding the SR_lock so we 1839 // can't just self-suspend. So we temporarily drop the lock 1840 // and then self-suspend. 1841 } 1842 1843 ThreadBlockInVM tbivm(this); 1844 java_suspend_self(); 1845 1846 // We're done with this suspend request, but we have to loop around 1847 // and check again. Eventually we will get SR_lock without a pending 1848 // external suspend request and will be able to mark ourselves as 1849 // exiting. 1850 } 1851 // no more external suspends are allowed at this point 1852 } else { 1853 // before_exit() has already posted JVMTI THREAD_END events 1854 } 1855 1856 // Notify waiters on thread object. This has to be done after exit() is called 1857 // on the thread (if the thread is the last thread in a daemon ThreadGroup the 1858 // group should have the destroyed bit set before waiters are notified). 1859 ensure_join(this); 1860 assert(!this->has_pending_exception(), "ensure_join should have cleared"); 1861 1862 // 6282335 JNI DetachCurrentThread spec states that all Java monitors 1863 // held by this thread must be released. The spec does not distinguish 1864 // between JNI-acquired and regular Java monitors. We can only see 1865 // regular Java monitors here if monitor enter-exit matching is broken. 1866 // 1867 // Optionally release any monitors for regular JavaThread exits. This 1868 // is provided as a work around for any bugs in monitor enter-exit 1869 // matching. This can be expensive so it is not enabled by default. 1870 // ObjectMonitor::Knob_ExitRelease is a superset of the 1871 // JNIDetachReleasesMonitors option. 1872 // 1873 // ensure_join() ignores IllegalThreadStateExceptions, and so does 1874 // ObjectSynchronizer::release_monitors_owned_by_thread(). 1875 if ((exit_type == jni_detach && JNIDetachReleasesMonitors) || 1876 ObjectMonitor::Knob_ExitRelease) { 1877 // Sanity check even though JNI DetachCurrentThread() would have 1878 // returned JNI_ERR if there was a Java frame. JavaThread exit 1879 // should be done executing Java code by the time we get here. 1880 assert(!this->has_last_Java_frame(), 1881 "should not have a Java frame when detaching or exiting"); 1882 ObjectSynchronizer::release_monitors_owned_by_thread(this); 1883 assert(!this->has_pending_exception(), "release_monitors should have cleared"); 1884 } 1885 1886 // These things needs to be done while we are still a Java Thread. Make sure that thread 1887 // is in a consistent state, in case GC happens 1888 assert(_privileged_stack_top == NULL, "must be NULL when we get here"); 1889 1890 if (active_handles() != NULL) { 1891 JNIHandleBlock* block = active_handles(); 1892 set_active_handles(NULL); 1893 JNIHandleBlock::release_block(block); 1894 } 1895 1896 if (free_handle_block() != NULL) { 1897 JNIHandleBlock* block = free_handle_block(); 1898 set_free_handle_block(NULL); 1899 JNIHandleBlock::release_block(block); 1900 } 1901 1902 // These have to be removed while this is still a valid thread. 1903 remove_stack_guard_pages(); 1904 1905 if (UseTLAB) { 1906 tlab().make_parsable(true); // retire TLAB 1907 } 1908 1909 if (JvmtiEnv::environments_might_exist()) { 1910 JvmtiExport::cleanup_thread(this); 1911 } 1912 1913 // We must flush any deferred card marks before removing a thread from 1914 // the list of active threads. 1915 Universe::heap()->flush_deferred_store_barrier(this); 1916 assert(deferred_card_mark().is_empty(), "Should have been flushed"); 1917 1918 #if INCLUDE_ALL_GCS 1919 // We must flush the G1-related buffers before removing a thread 1920 // from the list of active threads. We must do this after any deferred 1921 // card marks have been flushed (above) so that any entries that are 1922 // added to the thread's dirty card queue as a result are not lost. 1923 if (UseG1GC) { 1924 flush_barrier_queues(); 1925 } 1926 #endif // INCLUDE_ALL_GCS 1927 1928 // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread 1929 Threads::remove(this); 1930 } 1931 1932 #if INCLUDE_ALL_GCS 1933 // Flush G1-related queues. 1934 void JavaThread::flush_barrier_queues() { 1935 satb_mark_queue().flush(); 1936 dirty_card_queue().flush(); 1937 } 1938 1939 void JavaThread::initialize_queues() { 1940 assert(!SafepointSynchronize::is_at_safepoint(), 1941 "we should not be at a safepoint"); 1942 1943 ObjPtrQueue& satb_queue = satb_mark_queue(); 1944 SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set(); 1945 // The SATB queue should have been constructed with its active 1946 // field set to false. 1947 assert(!satb_queue.is_active(), "SATB queue should not be active"); 1948 assert(satb_queue.is_empty(), "SATB queue should be empty"); 1949 // If we are creating the thread during a marking cycle, we should 1950 // set the active field of the SATB queue to true. 1951 if (satb_queue_set.is_active()) { 1952 satb_queue.set_active(true); 1953 } 1954 1955 DirtyCardQueue& dirty_queue = dirty_card_queue(); 1956 // The dirty card queue should have been constructed with its 1957 // active field set to true. 1958 assert(dirty_queue.is_active(), "dirty card queue should be active"); 1959 } 1960 #endif // INCLUDE_ALL_GCS 1961 1962 void JavaThread::cleanup_failed_attach_current_thread() { 1963 if (get_thread_profiler() != NULL) { 1964 get_thread_profiler()->disengage(); 1965 ResourceMark rm; 1966 get_thread_profiler()->print(get_thread_name()); 1967 } 1968 1969 if (active_handles() != NULL) { 1970 JNIHandleBlock* block = active_handles(); 1971 set_active_handles(NULL); 1972 JNIHandleBlock::release_block(block); 1973 } 1974 1975 if (free_handle_block() != NULL) { 1976 JNIHandleBlock* block = free_handle_block(); 1977 set_free_handle_block(NULL); 1978 JNIHandleBlock::release_block(block); 1979 } 1980 1981 // These have to be removed while this is still a valid thread. 1982 remove_stack_guard_pages(); 1983 1984 if (UseTLAB) { 1985 tlab().make_parsable(true); // retire TLAB, if any 1986 } 1987 1988 #if INCLUDE_ALL_GCS 1989 if (UseG1GC) { 1990 flush_barrier_queues(); 1991 } 1992 #endif // INCLUDE_ALL_GCS 1993 1994 Threads::remove(this); 1995 delete this; 1996 } 1997 1998 1999 2000 2001 JavaThread* JavaThread::active() { 2002 Thread* thread = ThreadLocalStorage::thread(); 2003 assert(thread != NULL, "just checking"); 2004 if (thread->is_Java_thread()) { 2005 return (JavaThread*) thread; 2006 } else { 2007 assert(thread->is_VM_thread(), "this must be a vm thread"); 2008 VM_Operation* op = ((VMThread*) thread)->vm_operation(); 2009 JavaThread ret=op == NULL ? NULL : (JavaThread )op->calling_thread(); 2010 assert(ret->is_Java_thread(), "must be a Java thread"); 2011 return ret; 2012 } 2013 } 2014 2015 bool JavaThread::is_lock_owned(address adr) const { 2016 if (Thread::is_lock_owned(adr)) return true; 2017 2018 for (MonitorChunk chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2019 if (chunk->contains(adr)) return true; 2020 } 2021 2022 return false; 2023 } 2024 2025 2026 void JavaThread::add_monitor_chunk(MonitorChunk chunk) { 2027 chunk->set_next(monitor_chunks()); 2028 set_monitor_chunks(chunk); 2029 } 2030 2031 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) { 2032 guarantee(monitor_chunks() != NULL, "must be non empty"); 2033 if (monitor_chunks() == chunk) { 2034 set_monitor_chunks(chunk->next()); 2035 } else { 2036 MonitorChunk* prev = monitor_chunks(); 2037 while (prev->next() != chunk) prev = prev->next(); 2038 prev->set_next(chunk->next()); 2039 } 2040 } 2041 2042 // JVM support. 2043 2044 // Note: this function shouldn't block if it's called in 2045 // _thread_in_native_trans state (such as from 2046 // check_special_condition_for_native_trans()). 2047 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) { 2048 2049 if (has_last_Java_frame() && has_async_condition()) { 2050 // If we are at a polling page safepoint (not a poll return) 2051 // then we must defer async exception because live registers 2052 // will be clobbered by the exception path. Poll return is 2053 // ok because the call we a returning from already collides 2054 // with exception handling registers and so there is no issue. 2055 // (The exception handling path kills call result registers but 2056 // this is ok since the exception kills the result anyway). 2057 2058 if (is_at_poll_safepoint()) { 2059 // if the code we are returning to has deoptimized we must defer 2060 // the exception otherwise live registers get clobbered on the 2061 // exception path before deoptimization is able to retrieve them. 2062 // 2063 RegisterMap map(this, false); 2064 frame caller_fr = last_frame().sender(&map); 2065 assert(caller_fr.is_compiled_frame(), "what?"); 2066 if (caller_fr.is_deoptimized_frame()) { 2067 if (TraceExceptions) { 2068 ResourceMark rm; 2069 tty->print_cr("deferred async exception at compiled safepoint"); 2070 } 2071 return; 2072 } 2073 } 2074 } 2075 2076 JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition(); 2077 if (condition == _no_async_condition) { 2078 // Conditions have changed since has_special_runtime_exit_condition() 2079 // was called: 2080 // - if we were here only because of an external suspend request, 2081 // then that was taken care of above (or cancelled) so we are done 2082 // - if we were here because of another async request, then it has 2083 // been cleared between the has_special_runtime_exit_condition() 2084 // and now so again we are done 2085 return; 2086 } 2087 2088 // Check for pending async. exception 2089 if (_pending_async_exception != NULL) { 2090 // Only overwrite an already pending exception, if it is not a threadDeath. 2091 if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) { 2092 2093 // We cannot call Exceptions::_throw(...) here because we cannot block 2094 set_pending_exception(_pending_async_exception, FILE, LINE); 2095 2096 if (TraceExceptions) { 2097 ResourceMark rm; 2098 tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this); 2099 if (has_last_Java_frame()) { 2100 frame f = last_frame(); 2101 tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp()); 2102 } 2103 tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2104 } 2105 _pending_async_exception = NULL; 2106 clear_has_async_exception(); 2107 } 2108 } 2109 2110 if (check_unsafe_error && 2111 condition == _async_unsafe_access_error && !has_pending_exception()) { 2112 condition = _no_async_condition; // done 2113 switch (thread_state()) { 2114 case _thread_in_vm: { 2115 JavaThread* THREAD = this; 2116 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2117 } 2118 case _thread_in_native: { 2119 ThreadInVMfromNative tiv(this); 2120 JavaThread* THREAD = this; 2121 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation"); 2122 } 2123 case _thread_in_Java: { 2124 ThreadInVMfromJava tiv(this); 2125 JavaThread* THREAD = this; 2126 THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code"); 2127 } 2128 default: 2129 ShouldNotReachHere(); 2130 } 2131 } 2132 2133 assert(condition == _no_async_condition || has_pending_exception() || 2134 (!check_unsafe_error && condition == _async_unsafe_access_error), 2135 "must have handled the async condition, if no exception"); 2136 } 2137 2138 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) { 2139 // 2140 // Check for pending external suspend. Internal suspend requests do 2141 // not use handle_special_runtime_exit_condition(). 2142 // If JNIEnv proxies are allowed, don't self-suspend if the target 2143 // thread is not the current thread. In older versions of jdbx, jdbx 2144 // threads could call into the VM with another thread's JNIEnv so we 2145 // can be here operating on behalf of a suspended thread (4432884). 2146 bool do_self_suspend = is_external_suspend_with_lock(); 2147 if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) { 2148 // 2149 // Because thread is external suspended the safepoint code will count 2150 // thread as at a safepoint. This can be odd because we can be here 2151 // as _thread_in_Java which would normally transition to _thread_blocked 2152 // at a safepoint. We would like to mark the thread as _thread_blocked 2153 // before calling java_suspend_self like all other callers of it but 2154 // we must then observe proper safepoint protocol. (We can't leave 2155 // _thread_blocked with a safepoint in progress). However we can be 2156 // here as _thread_in_native_trans so we can't use a normal transition 2157 // constructor/destructor pair because they assert on that type of 2158 // transition. We could do something like: 2159 // 2160 // JavaThreadState state = thread_state(); 2161 // set_thread_state(_thread_in_vm); 2162 // { 2163 // ThreadBlockInVM tbivm(this); 2164 // java_suspend_self() 2165 // } 2166 // set_thread_state(_thread_in_vm_trans); 2167 // if (safepoint) block; 2168 // set_thread_state(state); 2169 // 2170 // but that is pretty messy. Instead we just go with the way the 2171 // code has worked before and note that this is the only path to 2172 // java_suspend_self that doesn't put the thread in _thread_blocked 2173 // mode. 2174 2175 frame_anchor()->make_walkable(this); 2176 java_suspend_self(); 2177 2178 // We might be here for reasons in addition to the self-suspend request 2179 // so check for other async requests. 2180 } 2181 2182 if (check_asyncs) { 2183 check_and_handle_async_exceptions(); 2184 } 2185 } 2186 2187 void JavaThread::send_thread_stop(oop java_throwable) { 2188 assert(Thread::current()->is_VM_thread(), "should be in the vm thread"); 2189 assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code"); 2190 assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped"); 2191 2192 // Do not throw asynchronous exceptions against the compiler thread 2193 // (the compiler thread should not be a Java thread -- fix in 1.4.2) 2194 if (!can_call_java()) return; 2195 2196 { 2197 // Actually throw the Throwable against the target Thread - however 2198 // only if there is no thread death exception installed already. 2199 if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) { 2200 // If the topmost frame is a runtime stub, then we are calling into 2201 // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..) 2202 // must deoptimize the caller before continuing, as the compiled exception handler table 2203 // may not be valid 2204 if (has_last_Java_frame()) { 2205 frame f = last_frame(); 2206 if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) { 2207 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2208 RegisterMap reg_map(this, UseBiasedLocking); 2209 frame compiled_frame = f.sender(&reg_map); 2210 if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) { 2211 Deoptimization::deoptimize(this, compiled_frame, &reg_map); 2212 } 2213 } 2214 } 2215 2216 // Set async. pending exception in thread. 2217 set_pending_async_exception(java_throwable); 2218 2219 if (TraceExceptions) { 2220 ResourceMark rm; 2221 tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name()); 2222 } 2223 // for AbortVMOnException flag 2224 NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name())); 2225 } 2226 } 2227 2228 2229 // Interrupt thread so it will wake up from a potential wait() 2230 Thread::interrupt(this); 2231 } 2232 2233 // External suspension mechanism. 2234 // 2235 // Tell the VM to suspend a thread when ever it knows that it does not hold on 2236 // to any VM_locks and it is at a transition 2237 // Self-suspension will happen on the transition out of the vm. 2238 // Catch "this" coming in from JNIEnv pointers when the thread has been freed 2239 // 2240 // Guarantees on return: 2241 // + Target thread will not execute any new bytecode (that's why we need to 2242 // force a safepoint) 2243 // + Target thread will not enter any new monitors 2244 // 2245 void JavaThread::java_suspend() { 2246 { MutexLocker mu(Threads_lock); 2247 if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) { 2248 return; 2249 } 2250 } 2251 2252 { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2253 if (!is_external_suspend()) { 2254 // a racing resume has cancelled us; bail out now 2255 return; 2256 } 2257 2258 // suspend is done 2259 uint32_t debug_bits = 0; 2260 // Warning: is_ext_suspend_completed() may temporarily drop the 2261 // SR_lock to allow the thread to reach a stable thread state if 2262 // it is currently in a transient thread state. 2263 if (is_ext_suspend_completed(false /* !called_by_wait /, 2264 SuspendRetryDelay, &debug_bits)) { 2265 return; 2266 } 2267 } 2268 2269 VM_ForceSafepoint vm_suspend; 2270 VMThread::execute(&vm_suspend); 2271 } 2272 2273 // Part II of external suspension. 2274 // A JavaThread self suspends when it detects a pending external suspend 2275 // request. This is usually on transitions. It is also done in places 2276 // where continuing to the next transition would surprise the caller, 2277 // e.g., monitor entry. 2278 // 2279 // Returns the number of times that the thread self-suspended. 2280 // 2281 // Note: DO NOT call java_suspend_self() when you just want to block current 2282 // thread. java_suspend_self() is the second stage of cooperative 2283 // suspension for external suspend requests and should only be used 2284 // to complete an external suspend request. 2285 // 2286 int JavaThread::java_suspend_self() { 2287 int ret = 0; 2288 2289 // we are in the process of exiting so don't suspend 2290 if (is_exiting()) { 2291 clear_external_suspend(); 2292 return ret; 2293 } 2294 2295 assert(_anchor.walkable() || 2296 (is_Java_thread() && !((JavaThread)this)->has_last_Java_frame()), 2297 "must have walkable stack"); 2298 2299 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2300 2301 assert(!this->is_ext_suspended(), 2302 "a thread trying to self-suspend should not already be suspended"); 2303 2304 if (this->is_suspend_equivalent()) { 2305 // If we are self-suspending as a result of the lifting of a 2306 // suspend equivalent condition, then the suspend_equivalent 2307 // flag is not cleared until we set the ext_suspended flag so 2308 // that wait_for_ext_suspend_completion() returns consistent 2309 // results. 2310 this->clear_suspend_equivalent(); 2311 } 2312 2313 // A racing resume may have cancelled us before we grabbed SR_lock 2314 // above. Or another external suspend request could be waiting for us 2315 // by the time we return from SR_lock()->wait(). The thread 2316 // that requested the suspension may already be trying to walk our 2317 // stack and if we return now, we can change the stack out from under 2318 // it. This would be a "bad thing (TM)" and cause the stack walker 2319 // to crash. We stay self-suspended until there are no more pending 2320 // external suspend requests. 2321 while (is_external_suspend()) { 2322 ret++; 2323 this->set_ext_suspended(); 2324 2325 // _ext_suspended flag is cleared by java_resume() 2326 while (is_ext_suspended()) { 2327 this->SR_lock()->wait(Mutex::_no_safepoint_check_flag); 2328 } 2329 } 2330 2331 return ret; 2332 } 2333 2334 #ifdef ASSERT 2335 // verify the JavaThread has not yet been published in the Threads::list, and 2336 // hence doesn't need protection from concurrent access at this stage 2337 void JavaThread::verify_not_published() { 2338 if (!Threads_lock->owned_by_self()) { 2339 MutexLockerEx ml(Threads_lock, Mutex::_no_safepoint_check_flag); 2340 assert(!Threads::includes(this), 2341 "java thread shouldn't have been published yet!"); 2342 } else { 2343 assert(!Threads::includes(this), 2344 "java thread shouldn't have been published yet!"); 2345 } 2346 } 2347 #endif 2348 2349 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2350 // progress or when _suspend_flags is non-zero. 2351 // Current thread needs to self-suspend if there is a suspend request and/or 2352 // block if a safepoint is in progress. 2353 // Async exception ISN'T checked. 2354 // Note only the ThreadInVMfromNative transition can call this function 2355 // directly and when thread state is _thread_in_native_trans 2356 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread thread) { 2357 assert(thread->thread_state() == _thread_in_native_trans, "wrong state"); 2358 2359 JavaThread curJT = JavaThread::current(); 2360 bool do_self_suspend = thread->is_external_suspend(); 2361 2362 assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition"); 2363 2364 // If JNIEnv proxies are allowed, don't self-suspend if the target 2365 // thread is not the current thread. In older versions of jdbx, jdbx 2366 // threads could call into the VM with another thread's JNIEnv so we 2367 // can be here operating on behalf of a suspended thread (4432884). 2368 if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) { 2369 JavaThreadState state = thread->thread_state(); 2370 2371 // We mark this thread_blocked state as a suspend-equivalent so 2372 // that a caller to is_ext_suspend_completed() won't be confused. 2373 // The suspend-equivalent state is cleared by java_suspend_self(). 2374 thread->set_suspend_equivalent(); 2375 2376 // If the safepoint code sees the _thread_in_native_trans state, it will 2377 // wait until the thread changes to other thread state. There is no 2378 // guarantee on how soon we can obtain the SR_lock and complete the 2379 // self-suspend request. It would be a bad idea to let safepoint wait for 2380 // too long. Temporarily change the state to _thread_blocked to 2381 // let the VM thread know that this thread is ready for GC. The problem 2382 // of changing thread state is that safepoint could happen just after 2383 // java_suspend_self() returns after being resumed, and VM thread will 2384 // see the _thread_blocked state. We must check for safepoint 2385 // after restoring the state and make sure we won't leave while a safepoint 2386 // is in progress. 2387 thread->set_thread_state(_thread_blocked); 2388 thread->java_suspend_self(); 2389 thread->set_thread_state(state); 2390 // Make sure new state is seen by VM thread 2391 if (os::is_MP()) { 2392 if (UseMembar) { 2393 // Force a fence between the write above and read below 2394 OrderAccess::fence(); 2395 } else { 2396 // Must use this rather than serialization page in particular on Windows 2397 InterfaceSupport::serialize_memory(thread); 2398 } 2399 } 2400 } 2401 2402 if (SafepointSynchronize::do_call_back()) { 2403 // If we are safepointing, then block the caller which may not be 2404 // the same as the target thread (see above). 2405 SafepointSynchronize::block(curJT); 2406 } 2407 2408 if (thread->is_deopt_suspend()) { 2409 thread->clear_deopt_suspend(); 2410 RegisterMap map(thread, false); 2411 frame f = thread->last_frame(); 2412 while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) { 2413 f = f.sender(&map); 2414 } 2415 if (f.id() == thread->must_deopt_id()) { 2416 thread->clear_must_deopt_id(); 2417 f.deoptimize(thread); 2418 } else { 2419 fatal("missed deoptimization!"); 2420 } 2421 } 2422 } 2423 2424 // Slow path when the native==>VM/Java barriers detect a safepoint is in 2425 // progress or when _suspend_flags is non-zero. 2426 // Current thread needs to self-suspend if there is a suspend request and/or 2427 // block if a safepoint is in progress. 2428 // Also check for pending async exception (not including unsafe access error). 2429 // Note only the native==>VM/Java barriers can call this function and when 2430 // thread state is _thread_in_native_trans. 2431 void JavaThread::check_special_condition_for_native_trans(JavaThread thread) { 2432 check_safepoint_and_suspend_for_native_trans(thread); 2433 2434 if (thread->has_async_exception()) { 2435 // We are in _thread_in_native_trans state, don't handle unsafe 2436 // access error since that may block. 2437 thread->check_and_handle_async_exceptions(false); 2438 } 2439 } 2440 2441 // This is a variant of the normal 2442 // check_special_condition_for_native_trans with slightly different 2443 // semantics for use by critical native wrappers. It does all the 2444 // normal checks but also performs the transition back into 2445 // thread_in_Java state. This is required so that critical natives 2446 // can potentially block and perform a GC if they are the last thread 2447 // exiting the GC_locker. 2448 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread thread) { 2449 check_special_condition_for_native_trans(thread); 2450 2451 // Finish the transition 2452 thread->set_thread_state(_thread_in_Java); 2453 2454 if (thread->do_critical_native_unlock()) { 2455 ThreadInVMfromJavaNoAsyncException tiv(thread); 2456 GC_locker::unlock_critical(thread); 2457 thread->clear_critical_native_unlock(); 2458 } 2459 } 2460 2461 // We need to guarantee the Threads_lock here, since resumes are not 2462 // allowed during safepoint synchronization 2463 // Can only resume from an external suspension 2464 void JavaThread::java_resume() { 2465 assert_locked_or_safepoint(Threads_lock); 2466 2467 // Sanity check: thread is gone, has started exiting or the thread 2468 // was not externally suspended. 2469 if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) { 2470 return; 2471 } 2472 2473 MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag); 2474 2475 clear_external_suspend(); 2476 2477 if (is_ext_suspended()) { 2478 clear_ext_suspended(); 2479 SR_lock()->notify_all(); 2480 } 2481 } 2482 2483 void JavaThread::create_stack_guard_pages() { 2484 if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return; 2485 address low_addr = stack_base() - stack_size(); 2486 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2487 2488 int allocate = os::allocate_stack_guard_pages(); 2489 // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len); 2490 2491 if (allocate && !os::create_stack_guard_pages((char ) low_addr, len)) { 2492 warning("Attempt to allocate stack guard pages failed."); 2493 return; 2494 } 2495 2496 if (os::guard_memory((char ) low_addr, len)) { 2497 _stack_guard_state = stack_guard_enabled; 2498 } else { 2499 warning("Attempt to protect stack guard pages failed."); 2500 if (os::uncommit_memory((char ) low_addr, len)) { 2501 warning("Attempt to deallocate stack guard pages failed."); 2502 } 2503 } 2504 } 2505 2506 void JavaThread::remove_stack_guard_pages() { 2507 assert(Thread::current() == this, "from different thread"); 2508 if (_stack_guard_state == stack_guard_unused) return; 2509 address low_addr = stack_base() - stack_size(); 2510 size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size(); 2511 2512 if (os::allocate_stack_guard_pages()) { 2513 if (os::remove_stack_guard_pages((char ) low_addr, len)) { 2514 _stack_guard_state = stack_guard_unused; 2515 } else { 2516 warning("Attempt to deallocate stack guard pages failed."); 2517 } 2518 } else { 2519 if (_stack_guard_state == stack_guard_unused) return; 2520 if (os::unguard_memory((char ) low_addr, len)) { 2521 _stack_guard_state = stack_guard_unused; 2522 } else { 2523 warning("Attempt to unprotect stack guard pages failed."); 2524 } 2525 } 2526 } 2527 2528 void JavaThread::enable_stack_yellow_zone() { 2529 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2530 assert(_stack_guard_state != stack_guard_enabled, "already enabled"); 2531 2532 // The base notation is from the stacks point of view, growing downward. 2533 // We need to adjust it to work correctly with guard_memory() 2534 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2535 2536 guarantee(base < stack_base(), "Error calculating stack yellow zone"); 2537 guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone"); 2538 2539 if (os::guard_memory((char *) base, stack_yellow_zone_size())) { 2540 _stack_guard_state = stack_guard_enabled; 2541 } else { 2542 warning("Attempt to guard stack yellow zone failed."); 2543 } 2544 enable_register_stack_guard(); 2545 } 2546 2547 void JavaThread::disable_stack_yellow_zone() { 2548 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2549 assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled"); 2550 2551 // Simply return if called for a thread that does not use guard pages. 2552 if (_stack_guard_state == stack_guard_unused) return; 2553 2554 // The base notation is from the stacks point of view, growing downward. 2555 // We need to adjust it to work correctly with guard_memory() 2556 address base = stack_yellow_zone_base() - stack_yellow_zone_size(); 2557 2558 if (os::unguard_memory((char *)base, stack_yellow_zone_size())) { 2559 _stack_guard_state = stack_guard_yellow_disabled; 2560 } else { 2561 warning("Attempt to unguard stack yellow zone failed."); 2562 } 2563 disable_register_stack_guard(); 2564 } 2565 2566 void JavaThread::enable_stack_red_zone() { 2567 // The base notation is from the stacks point of view, growing downward. 2568 // We need to adjust it to work correctly with guard_memory() 2569 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2570 address base = stack_red_zone_base() - stack_red_zone_size(); 2571 2572 guarantee(base < stack_base(), "Error calculating stack red zone"); 2573 guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone"); 2574 2575 if (!os::guard_memory((char *) base, stack_red_zone_size())) { 2576 warning("Attempt to guard stack red zone failed."); 2577 } 2578 } 2579 2580 void JavaThread::disable_stack_red_zone() { 2581 // The base notation is from the stacks point of view, growing downward. 2582 // We need to adjust it to work correctly with guard_memory() 2583 assert(_stack_guard_state != stack_guard_unused, "must be using guard pages."); 2584 address base = stack_red_zone_base() - stack_red_zone_size(); 2585 if (!os::unguard_memory((char *)base, stack_red_zone_size())) { 2586 warning("Attempt to unguard stack red zone failed."); 2587 } 2588 } 2589 2590 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) { 2591 // ignore is there is no stack 2592 if (!has_last_Java_frame()) return; 2593 // traverse the stack frames. Starts from top frame. 2594 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2595 frame* fr = fst.current(); 2596 f(fr, fst.register_map()); 2597 } 2598 } 2599 2600 2601 #ifndef PRODUCT 2602 // Deoptimization 2603 // Function for testing deoptimization 2604 void JavaThread::deoptimize() { 2605 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2606 StackFrameStream fst(this, UseBiasedLocking); 2607 bool deopt = false; // Dump stack only if a deopt actually happens. 2608 bool only_at = strlen(DeoptimizeOnlyAt) > 0; 2609 // Iterate over all frames in the thread and deoptimize 2610 for (; !fst.is_done(); fst.next()) { 2611 if (fst.current()->can_be_deoptimized()) { 2612 2613 if (only_at) { 2614 // Deoptimize only at particular bcis. DeoptimizeOnlyAt 2615 // consists of comma or carriage return separated numbers so 2616 // search for the current bci in that string. 2617 address pc = fst.current()->pc(); 2618 nmethod nm = (nmethod) fst.current()->cb(); 2619 ScopeDesc sd = nm->scope_desc_at(pc); 2620 char buffer[8]; 2621 jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci()); 2622 size_t len = strlen(buffer); 2623 const char * found = strstr(DeoptimizeOnlyAt, buffer); 2624 while (found != NULL) { 2625 if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') && 2626 (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) { 2627 // Check that the bci found is bracketed by terminators. 2628 break; 2629 } 2630 found = strstr(found + 1, buffer); 2631 } 2632 if (!found) { 2633 continue; 2634 } 2635 } 2636 2637 if (DebugDeoptimization && !deopt) { 2638 deopt = true; // One-time only print before deopt 2639 tty->print_cr("[BEFORE Deoptimization]"); 2640 trace_frames(); 2641 trace_stack(); 2642 } 2643 Deoptimization::deoptimize(this, fst.current(), fst.register_map()); 2644 } 2645 } 2646 2647 if (DebugDeoptimization && deopt) { 2648 tty->print_cr("[AFTER Deoptimization]"); 2649 trace_frames(); 2650 } 2651 } 2652 2653 2654 // Make zombies 2655 void JavaThread::make_zombies() { 2656 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2657 if (fst.current()->can_be_deoptimized()) { 2658 // it is a Java nmethod 2659 nmethod nm = CodeCache::find_nmethod(fst.current()->pc()); 2660 nm->make_not_entrant(); 2661 } 2662 } 2663 } 2664 #endif // PRODUCT 2665 2666 2667 void JavaThread::deoptimized_wrt_marked_nmethods() { 2668 if (!has_last_Java_frame()) return; 2669 // BiasedLocking needs an updated RegisterMap for the revoke monitors pass 2670 StackFrameStream fst(this, UseBiasedLocking); 2671 for (; !fst.is_done(); fst.next()) { 2672 if (fst.current()->should_be_deoptimized()) { 2673 Deoptimization::deoptimize(this, fst.current(), fst.register_map()); 2674 } 2675 } 2676 } 2677 2678 2679 // If the caller is a NamedThread, then remember, in the current scope, 2680 // the given JavaThread in its _processed_thread field. 2681 class RememberProcessedThread: public StackObj { 2682 NamedThread _cur_thr; 2683 public: 2684 RememberProcessedThread(JavaThread jthr) { 2685 Thread thread = Thread::current(); 2686 if (thread->is_Named_thread()) { 2687 _cur_thr = (NamedThread )thread; 2688 _cur_thr->set_processed_thread(jthr); 2689 } else { 2690 _cur_thr = NULL; 2691 } 2692 } 2693 2694 ~RememberProcessedThread() { 2695 if (_cur_thr) { 2696 _cur_thr->set_processed_thread(NULL); 2697 } 2698 } 2699 }; 2700 2701 void JavaThread::oops_do(OopClosure f, CLDClosure cld_f, CodeBlobClosure cf) { 2702 // Verify that the deferred card marks have been flushed. 2703 assert(deferred_card_mark().is_empty(), "Should be empty during GC"); 2704 2705 // The ThreadProfiler oops_do is done from FlatProfiler::oops_do 2706 // since there may be more than one thread using each ThreadProfiler. 2707 2708 // Traverse the GCHandles 2709 Thread::oops_do(f, cld_f, cf); 2710 2711 JVMCI_ONLY(f->do_oop((oop)&_pending_failed_speculation);) 2712 2713 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2714 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2715 2716 if (has_last_Java_frame()) { 2717 // Record JavaThread to GC thread 2718 RememberProcessedThread rpt(this); 2719 2720 // Traverse the privileged stack 2721 if (_privileged_stack_top != NULL) { 2722 _privileged_stack_top->oops_do(f); 2723 } 2724 2725 // traverse the registered growable array 2726 if (_array_for_gc != NULL) { 2727 for (int index = 0; index < _array_for_gc->length(); index++) { 2728 f->do_oop(_array_for_gc->adr_at(index)); 2729 } 2730 } 2731 2732 // Traverse the monitor chunks 2733 for (MonitorChunk chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) { 2734 chunk->oops_do(f); 2735 } 2736 2737 // Traverse the execution stack 2738 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2739 fst.current()->oops_do(f, cld_f, cf, fst.register_map()); 2740 } 2741 } 2742 2743 // callee_target is never live across a gc point so NULL it here should 2744 // it still contain a methdOop. 2745 2746 set_callee_target(NULL); 2747 2748 assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!"); 2749 // If we have deferred set_locals there might be oops waiting to be 2750 // written 2751 GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals(); 2752 if (list != NULL) { 2753 for (int i = 0; i < list->length(); i++) { 2754 list->at(i)->oops_do(f); 2755 } 2756 } 2757 2758 // Traverse instance variables at the end since the GC may be moving things 2759 // around using this function 2760 f->do_oop((oop*) &_threadObj); 2761 f->do_oop((oop*) &_vm_result); 2762 f->do_oop((oop*) &_exception_oop); 2763 f->do_oop((oop*) &_pending_async_exception); 2764 2765 if (jvmti_thread_state() != NULL) { 2766 jvmti_thread_state()->oops_do(f); 2767 } 2768 } 2769 2770 void JavaThread::nmethods_do(CodeBlobClosure* cf) { 2771 Thread::nmethods_do(cf); // (super method is a no-op) 2772 2773 assert((!has_last_Java_frame() && java_call_counter() == 0) || 2774 (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!"); 2775 2776 if (has_last_Java_frame()) { 2777 // Traverse the execution stack 2778 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2779 fst.current()->nmethods_do(cf); 2780 } 2781 } 2782 } 2783 2784 void JavaThread::metadata_do(void f(Metadata*)) { 2785 if (has_last_Java_frame()) { 2786 // Traverse the execution stack to call f() on the methods in the stack 2787 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 2788 fst.current()->metadata_do(f); 2789 } 2790 } else if (is_Compiler_thread()) { 2791 // need to walk ciMetadata in current compile tasks to keep alive. 2792 CompilerThread* ct = (CompilerThread*)this; 2793 if (ct->env() != NULL) { 2794 ct->env()->metadata_do(f); 2795 } 2796 if (ct->task() != NULL) { 2797 ct->task()->metadata_do(f); 2798 } 2799 } 2800 } 2801 2802 // Printing 2803 const char* _get_thread_state_name(JavaThreadState _thread_state) { 2804 switch (_thread_state) { 2805 case _thread_uninitialized: return "_thread_uninitialized"; 2806 case _thread_new: return "_thread_new"; 2807 case _thread_new_trans: return "_thread_new_trans"; 2808 case _thread_in_native: return "_thread_in_native"; 2809 case _thread_in_native_trans: return "_thread_in_native_trans"; 2810 case _thread_in_vm: return "_thread_in_vm"; 2811 case _thread_in_vm_trans: return "_thread_in_vm_trans"; 2812 case _thread_in_Java: return "_thread_in_Java"; 2813 case _thread_in_Java_trans: return "_thread_in_Java_trans"; 2814 case _thread_blocked: return "_thread_blocked"; 2815 case _thread_blocked_trans: return "_thread_blocked_trans"; 2816 default: return "unknown thread state"; 2817 } 2818 } 2819 2820 #ifndef PRODUCT 2821 void JavaThread::print_thread_state_on(outputStream st) const { 2822 st->print_cr(" JavaThread state: %s", _get_thread_state_name(_thread_state)); 2823 }; 2824 void JavaThread::print_thread_state() const { 2825 print_thread_state_on(tty); 2826 } 2827 #endif // PRODUCT 2828 2829 // Called by Threads::print() for VM_PrintThreads operation 2830 void JavaThread::print_on(outputStream st) const { 2831 st->print(""%s" ", get_thread_name()); 2832 oop thread_oop = threadObj(); 2833 if (thread_oop != NULL) { 2834 st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop)); 2835 if (java_lang_Thread::is_daemon(thread_oop)) st->print("daemon "); 2836 st->print("prio=%d ", java_lang_Thread::priority(thread_oop)); 2837 } 2838 Thread::print_on(st); 2839 // print guess for valid stack memory region (assume 4K pages); helps lock debugging 2840 st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12)); 2841 if (thread_oop != NULL) { 2842 st->print_cr(" java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop)); 2843 } 2844 #ifndef PRODUCT 2845 print_thread_state_on(st); 2846 _safepoint_state->print_on(st); 2847 #endif // PRODUCT 2848 } 2849 2850 // Called by fatal error handler. The difference between this and 2851 // JavaThread::print() is that we can't grab lock or allocate memory. 2852 void JavaThread::print_on_error(outputStream st, char buf, int buflen) const { 2853 st->print("JavaThread "%s"", get_thread_name_string(buf, buflen)); 2854 oop thread_obj = threadObj(); 2855 if (thread_obj != NULL) { 2856 if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon"); 2857 } 2858 st->print(" ["); 2859 st->print("%s", _get_thread_state_name(_thread_state)); 2860 if (osthread()) { 2861 st->print(", id=%d", osthread()->thread_id()); 2862 } 2863 st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")", 2864 _stack_base - _stack_size, _stack_base); 2865 st->print("]"); 2866 return; 2867 } 2868 2869 // Verification 2870 2871 static void frame_verify(frame f, const RegisterMap map) { f->verify(map); } 2872 2873 void JavaThread::verify() { 2874 // Verify oops in the thread. 2875 oops_do(&VerifyOopClosure::verify_oop, NULL, NULL); 2876 2877 // Verify the stack frames. 2878 frames_do(frame_verify); 2879 } 2880 2881 // CR 6300358 (sub-CR 2137150) 2882 // Most callers of this method assume that it can't return NULL but a 2883 // thread may not have a name whilst it is in the process of attaching to 2884 // the VM - see CR 6412693, and there are places where a JavaThread can be 2885 // seen prior to having it's threadObj set (eg JNI attaching threads and 2886 // if vm exit occurs during initialization). These cases can all be accounted 2887 // for such that this method never returns NULL. 2888 const char JavaThread::get_thread_name() const { 2889 #ifdef ASSERT 2890 // early safepoints can hit while current thread does not yet have TLS 2891 if (!SafepointSynchronize::is_at_safepoint()) { 2892 Thread cur = Thread::current(); 2893 if (!(cur->is_Java_thread() && cur == this)) { 2894 // Current JavaThreads are allowed to get their own name without 2895 // the Threads_lock. 2896 assert_locked_or_safepoint(Threads_lock); 2897 } 2898 } 2899 #endif // ASSERT 2900 return get_thread_name_string(); 2901 } 2902 2903 // Returns a non-NULL representation of this thread's name, or a suitable 2904 // descriptive string if there is no set name 2905 const char JavaThread::get_thread_name_string(char buf, int buflen) const { 2906 const char* name_str; 2907 oop thread_obj = threadObj(); 2908 if (thread_obj != NULL) { 2909 oop name = java_lang_Thread::name(thread_obj); 2910 if (name != NULL) { 2911 if (buf == NULL) { 2912 name_str = java_lang_String::as_utf8_string(name); 2913 } else { 2914 name_str = java_lang_String::as_utf8_string(name, buf, buflen); 2915 } 2916 } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306 2917 name_str = "<no-name - thread is attaching>"; 2918 } else { 2919 name_str = Thread::name(); 2920 } 2921 } else { 2922 name_str = Thread::name(); 2923 } 2924 assert(name_str != NULL, "unexpected NULL thread name"); 2925 return name_str; 2926 } 2927 2928 2929 const char* JavaThread::get_threadgroup_name() const { 2930 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2931 oop thread_obj = threadObj(); 2932 if (thread_obj != NULL) { 2933 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2934 if (thread_group != NULL) { 2935 typeArrayOop name = java_lang_ThreadGroup::name(thread_group); 2936 // ThreadGroup.name can be null 2937 if (name != NULL) { 2938 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2939 return str; 2940 } 2941 } 2942 } 2943 return NULL; 2944 } 2945 2946 const char* JavaThread::get_parent_name() const { 2947 debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);) 2948 oop thread_obj = threadObj(); 2949 if (thread_obj != NULL) { 2950 oop thread_group = java_lang_Thread::threadGroup(thread_obj); 2951 if (thread_group != NULL) { 2952 oop parent = java_lang_ThreadGroup::parent(thread_group); 2953 if (parent != NULL) { 2954 typeArrayOop name = java_lang_ThreadGroup::name(parent); 2955 // ThreadGroup.name can be null 2956 if (name != NULL) { 2957 const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length()); 2958 return str; 2959 } 2960 } 2961 } 2962 } 2963 return NULL; 2964 } 2965 2966 ThreadPriority JavaThread::java_priority() const { 2967 oop thr_oop = threadObj(); 2968 if (thr_oop == NULL) return NormPriority; // Bootstrapping 2969 ThreadPriority priority = java_lang_Thread::priority(thr_oop); 2970 assert(MinPriority <= priority && priority <= MaxPriority, "sanity check"); 2971 return priority; 2972 } 2973 2974 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) { 2975 2976 assert(Threads_lock->owner() == Thread::current(), "must have threads lock"); 2977 // Link Java Thread object <-> C++ Thread 2978 2979 // Get the C++ thread object (an oop) from the JNI handle (a jthread) 2980 // and put it into a new Handle. The Handle "thread_oop" can then 2981 // be used to pass the C++ thread object to other methods. 2982 2983 // Set the Java level thread object (jthread) field of the 2984 // new thread (a JavaThread ) to C++ thread object using the 2985 // "thread_oop" handle. 2986 2987 // Set the thread field (a JavaThread ) of the 2988 // oop representing the java_lang_Thread to the new thread (a JavaThread ). 2989 2990 Handle thread_oop(Thread::current(), 2991 JNIHandles::resolve_non_null(jni_thread)); 2992 assert(InstanceKlass::cast(thread_oop->klass())->is_linked(), 2993 "must be initialized"); 2994 set_threadObj(thread_oop()); 2995 java_lang_Thread::set_thread(thread_oop(), this); 2996 2997 if (prio == NoPriority) { 2998 prio = java_lang_Thread::priority(thread_oop()); 2999 assert(prio != NoPriority, "A valid priority should be present"); 3000 } 3001 3002 // Push the Java priority down to the native thread; needs Threads_lock 3003 Thread::set_priority(this, prio); 3004 3005 prepare_ext(); 3006 3007 // Add the new thread to the Threads list and set it in motion. 3008 // We must have threads lock in order to call Threads::add. 3009 // It is crucial that we do not block before the thread is 3010 // added to the Threads list for if a GC happens, then the java_thread oop 3011 // will not be visited by GC. 3012 Threads::add(this); 3013 } 3014 3015 oop JavaThread::current_park_blocker() { 3016 // Support for JSR-166 locks 3017 oop thread_oop = threadObj(); 3018 if (thread_oop != NULL && 3019 JDK_Version::current().supports_thread_park_blocker()) { 3020 return java_lang_Thread::park_blocker(thread_oop); 3021 } 3022 return NULL; 3023 } 3024 3025 3026 void JavaThread::print_stack_on(outputStream st) { 3027 if (!has_last_Java_frame()) return; 3028 ResourceMark rm; 3029 HandleMark hm; 3030 3031 RegisterMap reg_map(this); 3032 vframe start_vf = last_java_vframe(&reg_map); 3033 int count = 0; 3034 for (vframe f = start_vf; f; f = f->sender()) { 3035 if (f->is_java_frame()) { 3036 javaVFrame* jvf = javaVFrame::cast(f); 3037 java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci()); 3038 3039 // Print out lock information 3040 if (JavaMonitorsInStackTrace) { 3041 jvf->print_lock_info_on(st, count); 3042 } 3043 } else { 3044 // Ignore non-Java frames 3045 } 3046 3047 // Bail-out case for too deep stacks 3048 count++; 3049 if (MaxJavaStackTraceDepth == count) return; 3050 } 3051 } 3052 3053 3054 // JVMTI PopFrame support 3055 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) { 3056 assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments"); 3057 if (in_bytes(size_in_bytes) != 0) { 3058 _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread); 3059 _popframe_preserved_args_size = in_bytes(size_in_bytes); 3060 Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size); 3061 } 3062 } 3063 3064 void* JavaThread::popframe_preserved_args() { 3065 return _popframe_preserved_args; 3066 } 3067 3068 ByteSize JavaThread::popframe_preserved_args_size() { 3069 return in_ByteSize(_popframe_preserved_args_size); 3070 } 3071 3072 WordSize JavaThread::popframe_preserved_args_size_in_words() { 3073 int sz = in_bytes(popframe_preserved_args_size()); 3074 assert(sz % wordSize == 0, "argument size must be multiple of wordSize"); 3075 return in_WordSize(sz / wordSize); 3076 } 3077 3078 void JavaThread::popframe_free_preserved_args() { 3079 assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice"); 3080 FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args); 3081 _popframe_preserved_args = NULL; 3082 _popframe_preserved_args_size = 0; 3083 } 3084 3085 #ifndef PRODUCT 3086 3087 void JavaThread::trace_frames() { 3088 tty->print_cr("[Describe stack]"); 3089 int frame_no = 1; 3090 for (StackFrameStream fst(this); !fst.is_done(); fst.next()) { 3091 tty->print(" %d. ", frame_no++); 3092 fst.current()->print_value_on(tty, this); 3093 tty->cr(); 3094 } 3095 } 3096 3097 class PrintAndVerifyOopClosure: public OopClosure { 3098 protected: 3099 template inline void do_oop_work(T* p) { 3100 oop obj = oopDesc::load_decode_heap_oop(p); 3101 if (obj == NULL) return; 3102 tty->print(INTPTR_FORMAT ": ", p); 3103 if (obj->is_oop_or_null()) { 3104 if (obj->is_objArray()) { 3105 tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj); 3106 } else { 3107 obj->print(); 3108 } 3109 } else { 3110 tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj); 3111 } 3112 tty->cr(); 3113 } 3114 public: 3115 virtual void do_oop(oop* p) { do_oop_work(p); } 3116 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 3117 }; 3118 3119 3120 static void oops_print(frame* f, const RegisterMap map) { 3121 PrintAndVerifyOopClosure print; 3122 f->print_value(); 3123 f->oops_do(&print, NULL, NULL, (RegisterMap)map); 3124 } 3125 3126 // Print our all the locations that contain oops and whether they are 3127 // valid or not. This useful when trying to find the oldest frame 3128 // where an oop has gone bad since the frame walk is from youngest to 3129 // oldest. 3130 void JavaThread::trace_oops() { 3131 tty->print_cr("[Trace oops]"); 3132 frames_do(oops_print); 3133 } 3134 3135 3136 #ifdef ASSERT 3137 // Print or validate the layout of stack frames 3138 void JavaThread::print_frame_layout(int depth, bool validate_only) { 3139 ResourceMark rm; 3140 PRESERVE_EXCEPTION_MARK; 3141 FrameValues values; 3142 int frame_no = 0; 3143 for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) { 3144 fst.current()->describe(values, ++frame_no); 3145 if (depth == frame_no) break; 3146 } 3147 if (validate_only) { 3148 values.validate(); 3149 } else { 3150 tty->print_cr("[Describe stack layout]"); 3151 values.print(this); 3152 } 3153 } 3154 #endif 3155 3156 void JavaThread::trace_stack_from(vframe* start_vf) { 3157 ResourceMark rm; 3158 int vframe_no = 1; 3159 for (vframe* f = start_vf; f; f = f->sender()) { 3160 if (f->is_java_frame()) { 3161 javaVFrame::cast(f)->print_activation(vframe_no++); 3162 } else { 3163 f->print(); 3164 } 3165 if (vframe_no > StackPrintLimit) { 3166 tty->print_cr("......"); 3167 return; 3168 } 3169 } 3170 } 3171 3172 3173 void JavaThread::trace_stack() { 3174 if (!has_last_Java_frame()) return; 3175 ResourceMark rm; 3176 HandleMark hm; 3177 RegisterMap reg_map(this); 3178 trace_stack_from(last_java_vframe(&reg_map)); 3179 } 3180 3181 3182 #endif // PRODUCT 3183 3184 3185 javaVFrame* JavaThread::last_java_vframe(RegisterMap reg_map) { 3186 assert(reg_map != NULL, "a map must be given"); 3187 frame f = last_frame(); 3188 for (vframe vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) { 3189 if (vf->is_java_frame()) return javaVFrame::cast(vf); 3190 } 3191 return NULL; 3192 } 3193 3194 3195 Klass* JavaThread::security_get_caller_class(int depth) { 3196 vframeStream vfst(this); 3197 vfst.security_get_caller_frame(depth); 3198 if (!vfst.at_end()) { 3199 return vfst.method()->method_holder(); 3200 } 3201 return NULL; 3202 } 3203 3204 static void compiler_thread_entry(JavaThread* thread, TRAPS) { 3205 assert(thread->is_Compiler_thread(), "must be compiler thread"); 3206 CompileBroker::compiler_thread_loop(); 3207 } 3208 3209 static void sweeper_thread_entry(JavaThread* thread, TRAPS) { 3210 NMethodSweeper::sweeper_loop(); 3211 } 3212 3213 // Create a CompilerThread 3214 CompilerThread::CompilerThread(CompileQueue* queue, 3215 CompilerCounters* counters) 3216 : JavaThread(&compiler_thread_entry) { 3217 _env = NULL; 3218 _log = NULL; 3219 _task = NULL; 3220 _queue = queue; 3221 _counters = counters; 3222 _buffer_blob = NULL; 3223 _compiler = NULL; 3224 3225 #ifndef PRODUCT 3226 _ideal_graph_printer = NULL; 3227 #endif 3228 } 3229 3230 bool CompilerThread::can_call_java() const { 3231 return _compiler != NULL && _compiler->is_jvmci(); 3232 } 3233 3234 // Create sweeper thread 3235 CodeCacheSweeperThread::CodeCacheSweeperThread() 3236 : JavaThread(&sweeper_thread_entry) { 3237 _scanned_nmethod = NULL; 3238 } 3239 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 3240 JavaThread::oops_do(f, cld_f, cf); 3241 if (_scanned_nmethod != NULL && cf != NULL) { 3242 // Safepoints can occur when the sweeper is scanning an nmethod so 3243 // process it here to make sure it isn't unloaded in the middle of 3244 // a scan. 3245 cf->do_code_blob(_scanned_nmethod); 3246 } 3247 } 3248 3249 3250 // ======= Threads ======== 3251 3252 // The Threads class links together all active threads, and provides 3253 // operations over all threads. It is protected by its own Mutex 3254 // lock, which is also used in other contexts to protect thread 3255 // operations from having the thread being operated on from exiting 3256 // and going away unexpectedly (e.g., safepoint synchronization) 3257 3258 JavaThread* Threads::_thread_list = NULL; 3259 int Threads::_number_of_threads = 0; 3260 int Threads::_number_of_non_daemon_threads = 0; 3261 int Threads::_return_code = 0; 3262 int Threads::_thread_claim_parity = 0; 3263 size_t JavaThread::_stack_size_at_create = 0; 3264 #ifdef ASSERT 3265 bool Threads::_vm_complete = false; 3266 #endif 3267 3268 // All JavaThreads 3269 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next()) 3270 3271 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system) 3272 void Threads::threads_do(ThreadClosure* tc) { 3273 assert_locked_or_safepoint(Threads_lock); 3274 // ALL_JAVA_THREADS iterates through all JavaThreads 3275 ALL_JAVA_THREADS(p) { 3276 tc->do_thread(p); 3277 } 3278 // Someday we could have a table or list of all non-JavaThreads. 3279 // For now, just manually iterate through them. 3280 tc->do_thread(VMThread::vm_thread()); 3281 Universe::heap()->gc_threads_do(tc); 3282 WatcherThread wt = WatcherThread::watcher_thread(); 3283 // Strictly speaking, the following NULL check isn't sufficient to make sure 3284 // the data for WatcherThread is still valid upon being examined. However, 3285 // considering that WatchThread terminates when the VM is on the way to 3286 // exit at safepoint, the chance of the above is extremely small. The right 3287 // way to prevent termination of WatcherThread would be to acquire 3288 // Terminator_lock, but we can't do that without violating the lock rank 3289 // checking in some cases. 3290 if (wt != NULL) { 3291 tc->do_thread(wt); 3292 } 3293 3294 // If CompilerThreads ever become non-JavaThreads, add them here 3295 } 3296 3297 void Threads::initialize_java_lang_classes(JavaThread main_thread, TRAPS) { 3298 TraceTime timer("Initialize java.lang classes", TraceStartupTime); 3299 3300 if (EagerXrunInit && Arguments::init_libraries_at_startup()) { 3301 create_vm_init_libraries(); 3302 } 3303 3304 initialize_class(vmSymbols::java_lang_String(), CHECK); 3305 3306 // Initialize java_lang.System (needed before creating the thread) 3307 initialize_class(vmSymbols::java_lang_System(), CHECK); 3308 // The VM creates & returns objects of this class. Make sure it's initialized. 3309 initialize_class(vmSymbols::java_lang_Class(), CHECK); 3310 initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK); 3311 Handle thread_group = create_initial_thread_group(CHECK); 3312 Universe::set_main_thread_group(thread_group()); 3313 initialize_class(vmSymbols::java_lang_Thread(), CHECK); 3314 oop thread_object = create_initial_thread(thread_group, main_thread, CHECK); 3315 main_thread->set_threadObj(thread_object); 3316 // Set thread status to running since main thread has 3317 // been started and running. 3318 java_lang_Thread::set_thread_status(thread_object, 3319 java_lang_Thread::RUNNABLE); 3320 3321 // The VM preresolves methods to these classes. Make sure that they get initialized 3322 initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK); 3323 initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK); 3324 call_initializeSystemClass(CHECK); 3325 3326 // get the Java runtime name after java.lang.System is initialized 3327 JDK_Version::set_runtime_name(get_java_runtime_name(THREAD)); 3328 JDK_Version::set_runtime_version(get_java_runtime_version(THREAD)); 3329 3330 // an instance of OutOfMemory exception has been allocated earlier 3331 initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK); 3332 initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK); 3333 initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK); 3334 initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK); 3335 initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK); 3336 initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK); 3337 initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK); 3338 initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK); 3339 } 3340 3341 void Threads::initialize_jsr292_core_classes(TRAPS) { 3342 initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK); 3343 initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK); 3344 initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK); 3345 } 3346 3347 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) { 3348 extern void JDK_Version_init(); 3349 3350 // Preinitialize version info. 3351 VM_Version::early_initialize(); 3352 3353 // Check version 3354 if (!is_supported_jni_version(args->version)) return JNI_EVERSION; 3355 3356 // Initialize the output stream module 3357 ostream_init(); 3358 3359 // Process java launcher properties. 3360 Arguments::process_sun_java_launcher_properties(args); 3361 3362 // Initialize the os module before using TLS 3363 os::init(); 3364 3365 // Initialize system properties. 3366 Arguments::init_system_properties(); 3367 3368 // So that JDK version can be used as a discriminator when parsing arguments 3369 JDK_Version_init(); 3370 3371 // Update/Initialize System properties after JDK version number is known 3372 Arguments::init_version_specific_system_properties(); 3373 3374 // Parse arguments 3375 jint parse_result = Arguments::parse(args); 3376 if (parse_result != JNI_OK) return parse_result; 3377 3378 os::init_before_ergo(); 3379 3380 jint ergo_result = Arguments::apply_ergo(); 3381 if (ergo_result != JNI_OK) return ergo_result; 3382 3383 // Final check of all ranges after ergonomics which may change values. 3384 if (!CommandLineFlagRangeList::check_ranges()) { 3385 return JNI_EINVAL; 3386 } 3387 3388 // Final check of all 'AfterErgo' constraints after ergonomics which may change values. 3389 bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo); 3390 if (!constraint_result) { 3391 return JNI_EINVAL; 3392 } 3393 3394 if (PauseAtStartup) { 3395 os::pause(); 3396 } 3397 3398 HOTSPOT_VM_INIT_BEGIN(); 3399 3400 // Record VM creation timing statistics 3401 TraceVmCreationTime create_vm_timer; 3402 create_vm_timer.start(); 3403 3404 // Timing (must come after argument parsing) 3405 TraceTime timer("Create VM", TraceStartupTime); 3406 3407 // Initialize the os module after parsing the args 3408 jint os_init_2_result = os::init_2(); 3409 if (os_init_2_result != JNI_OK) return os_init_2_result; 3410 3411 jint adjust_after_os_result = Arguments::adjust_after_os(); 3412 if (adjust_after_os_result != JNI_OK) return adjust_after_os_result; 3413 3414 // initialize TLS 3415 ThreadLocalStorage::init(); 3416 3417 // Initialize output stream logging 3418 ostream_init_log(); 3419 3420 // Convert -Xrun to -agentlib: if there is no JVM_OnLoad 3421 // Must be before create_vm_init_agents() 3422 if (Arguments::init_libraries_at_startup()) { 3423 convert_vm_init_libraries_to_agents(); 3424 } 3425 3426 // Launch -agentlib/-agentpath and converted -Xrun agents 3427 if (Arguments::init_agents_at_startup()) { 3428 create_vm_init_agents(); 3429 } 3430 3431 // Initialize Threads state 3432 _thread_list = NULL; 3433 _number_of_threads = 0; 3434 _number_of_non_daemon_threads = 0; 3435 3436 // Initialize global data structures and create system classes in heap 3437 vm_init_globals(); 3438 3439 #if INCLUDE_JVMCI 3440 if (JVMCICounterSize > 0) { 3441 JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal); 3442 memset(JavaThread::jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize); 3443 } else { 3444 JavaThread::jvmci_old_thread_counters = NULL; 3445 } 3446 #endif 3447 3448 // Attach the main thread to this os thread 3449 JavaThread* main_thread = new JavaThread(); 3450 main_thread->set_thread_state(thread_in_vm); 3451 // must do this before set_active_handles and initialize_thread_local_storage 3452 // Note: on solaris initialize_thread_local_storage() will (indirectly) 3453 // change the stack size recorded here to one based on the java thread 3454 // stacksize. This adjusted size is what is used to figure the placement 3455 // of the guard pages. 3456 main_thread->record_stack_base_and_size(); 3457 main_thread->initialize_thread_local_storage(); 3458 3459 main_thread->set_active_handles(JNIHandleBlock::allocate_block()); 3460 3461 if (!main_thread->set_as_starting_thread()) { 3462 vm_shutdown_during_initialization( 3463 "Failed necessary internal allocation. Out of swap space"); 3464 delete main_thread; 3465 canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3466 return JNI_ENOMEM; 3467 } 3468 3469 // Enable guard page after os::create_main_thread(), otherwise it would 3470 // crash Linux VM, see notes in os_linux.cpp. 3471 main_thread->create_stack_guard_pages(); 3472 3473 // Initialize Java-Level synchronization subsystem 3474 ObjectMonitor::Initialize(); 3475 3476 // Initialize global modules 3477 jint status = init_globals(); 3478 if (status != JNI_OK) { 3479 delete main_thread; 3480 canTryAgain = false; // don't let caller call JNI_CreateJavaVM again 3481 return status; 3482 } 3483 3484 // Should be done after the heap is fully created 3485 main_thread->cache_global_variables(); 3486 3487 HandleMark hm; 3488 3489 { MutexLocker mu(Threads_lock); 3490 Threads::add(main_thread); 3491 } 3492 3493 // Any JVMTI raw monitors entered in onload will transition into 3494 // real raw monitor. VM is setup enough here for raw monitor enter. 3495 JvmtiExport::transition_pending_onload_raw_monitors(); 3496 3497 // Create the VMThread 3498 { TraceTime timer("Start VMThread", TraceStartupTime); 3499 VMThread::create(); 3500 Thread vmthread = VMThread::vm_thread(); 3501 3502 if (!os::create_thread(vmthread, os::vm_thread)) { 3503 vm_exit_during_initialization("Cannot create VM thread. " 3504 "Out of system resources."); 3505 } 3506 3507 // Wait for the VM thread to become ready, and VMThread::run to initialize 3508 // Monitors can have spurious returns, must always check another state flag 3509 { 3510 MutexLocker ml(Notify_lock); 3511 os::start_thread(vmthread); 3512 while (vmthread->active_handles() == NULL) { 3513 Notify_lock->wait(); 3514 } 3515 } 3516 } 3517 3518 assert(Universe::is_fully_initialized(), "not initialized"); 3519 if (VerifyDuringStartup) { 3520 // Make sure we're starting with a clean slate. 3521 VM_Verify verify_op; 3522 VMThread::execute(&verify_op); 3523 } 3524 3525 Thread THREAD = Thread::current(); 3526 3527 // At this point, the Universe is initialized, but we have not executed 3528 // any byte code. Now is a good time (the only time) to dump out the 3529 // internal state of the JVM for sharing. 3530 if (DumpSharedSpaces) { 3531 MetaspaceShared::preload_and_dump(CHECK_JNI_ERR); 3532 ShouldNotReachHere(); 3533 } 3534 3535 // Always call even when there are not JVMTI environments yet, since environments 3536 // may be attached late and JVMTI must track phases of VM execution 3537 JvmtiExport::enter_start_phase(); 3538 3539 // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents. 3540 JvmtiExport::post_vm_start(); 3541 3542 initialize_java_lang_classes(main_thread, CHECK_JNI_ERR); 3543 3544 // We need this for ClassDataSharing - the initial vm.info property is set 3545 // with the default value of CDS "sharing" which may be reset through 3546 // command line options. 3547 reset_vm_info_property(CHECK_JNI_ERR); 3548 3549 quicken_jni_functions(); 3550 3551 // Must be run after init_ft which initializes ft_enabled 3552 if (TRACE_INITIALIZE() != JNI_OK) { 3553 vm_exit_during_initialization("Failed to initialize tracing backend"); 3554 } 3555 3556 // Set flag that basic initialization has completed. Used by exceptions and various 3557 // debug stuff, that does not work until all basic classes have been initialized. 3558 set_init_completed(); 3559 3560 Metaspace::post_initialize(); 3561 3562 HOTSPOT_VM_INIT_END(); 3563 3564 // record VM initialization completion time 3565 #if INCLUDE_MANAGEMENT 3566 Management::record_vm_init_completed(); 3567 #endif // INCLUDE_MANAGEMENT 3568 3569 // Compute system loader. Note that this has to occur after set_init_completed, since 3570 // valid exceptions may be thrown in the process. 3571 // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and 3572 // set_init_completed has just been called, causing exceptions not to be shortcut 3573 // anymore. We call vm_exit_during_initialization directly instead. 3574 SystemDictionary::compute_java_system_loader(CHECK(JNI_ERR)); 3575 3576 #if INCLUDE_ALL_GCS 3577 // Support for ConcurrentMarkSweep. This should be cleaned up 3578 // and better encapsulated. The ugly nested if test would go away 3579 // once things are properly refactored. XXX YSR 3580 if (UseConcMarkSweepGC || UseG1GC) { 3581 if (UseConcMarkSweepGC) { 3582 ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3583 } else { 3584 ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR); 3585 } 3586 } 3587 #endif // INCLUDE_ALL_GCS 3588 3589 // Always call even when there are not JVMTI environments yet, since environments 3590 // may be attached late and JVMTI must track phases of VM execution 3591 JvmtiExport::enter_live_phase(); 3592 3593 // Signal Dispatcher needs to be started before VMInit event is posted 3594 os::signal_init(); 3595 3596 // Start Attach Listener if +StartAttachListener or it can't be started lazily 3597 if (!DisableAttachMechanism) { 3598 AttachListener::vm_start(); 3599 if (StartAttachListener || AttachListener::init_at_startup()) { 3600 AttachListener::init(); 3601 } 3602 } 3603 3604 // Launch -Xrun agents 3605 // Must be done in the JVMTI live phase so that for backward compatibility the JDWP 3606 // back-end can launch with -Xdebug -Xrunjdwp. 3607 if (!EagerXrunInit && Arguments::init_libraries_at_startup()) { 3608 create_vm_init_libraries(); 3609 } 3610 3611 // Notify JVMTI agents that VM initialization is complete - nop if no agents. 3612 JvmtiExport::post_vm_initialized(); 3613 3614 if (TRACE_START() != JNI_OK) { 3615 vm_exit_during_initialization("Failed to start tracing backend."); 3616 } 3617 3618 if (CleanChunkPoolAsync) { 3619 Chunk::start_chunk_pool_cleaner_task(); 3620 } 3621 3622 #if INCLUDE_JVMCI 3623 if (EnableJVMCI) { 3624 const char* jvmciCompiler = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.compiler"); 3625 if (jvmciCompiler != NULL) { 3626 JVMCIRuntime::save_compiler(jvmciCompiler); 3627 } 3628 const char* jvmciOptions = Arguments::PropertyList_get_value(Arguments::system_properties(), "jvmci.options"); 3629 if (jvmciOptions != NULL) { 3630 JVMCIRuntime::save_options(jvmciOptions); 3631 } 3632 } 3633 #endif 3634 3635 // initialize compiler(s) 3636 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI 3637 CompileBroker::compilation_init(); 3638 #endif 3639 3640 // Pre-initialize some JSR292 core classes to avoid deadlock during class loading. 3641 // It is done after compilers are initialized, because otherwise compilations of 3642 // signature polymorphic MH intrinsics can be missed 3643 // (see SystemDictionary::find_method_handle_intrinsic). 3644 initialize_jsr292_core_classes(CHECK_JNI_ERR); 3645 3646 #if INCLUDE_MANAGEMENT 3647 Management::initialize(THREAD); 3648 3649 if (HAS_PENDING_EXCEPTION) { 3650 // management agent fails to start possibly due to 3651 // configuration problem and is responsible for printing 3652 // stack trace if appropriate. Simply exit VM. 3653 vm_exit(1); 3654 } 3655 #endif // INCLUDE_MANAGEMENT 3656 3657 if (Arguments::has_profile()) FlatProfiler::engage(main_thread, true); 3658 if (MemProfiling) MemProfiler::engage(); 3659 StatSampler::engage(); 3660 if (CheckJNICalls) JniPeriodicChecker::engage(); 3661 3662 BiasedLocking::init(); 3663 3664 #if INCLUDE_RTM_OPT 3665 RTMLockingCounters::init(); 3666 #endif 3667 3668 if (JDK_Version::current().post_vm_init_hook_enabled()) { 3669 call_postVMInitHook(THREAD); 3670 // The Java side of PostVMInitHook.run must deal with all 3671 // exceptions and provide means of diagnosis. 3672 if (HAS_PENDING_EXCEPTION) { 3673 CLEAR_PENDING_EXCEPTION; 3674 } 3675 } 3676 3677 { 3678 MutexLocker ml(PeriodicTask_lock); 3679 // Make sure the WatcherThread can be started by WatcherThread::start() 3680 // or by dynamic enrollment. 3681 WatcherThread::make_startable(); 3682 // Start up the WatcherThread if there are any periodic tasks 3683 // NOTE: All PeriodicTasks should be registered by now. If they 3684 // aren't, late joiners might appear to start slowly (we might 3685 // take a while to process their first tick). 3686 if (PeriodicTask::num_tasks() > 0) { 3687 WatcherThread::start(); 3688 } 3689 } 3690 3691 CodeCacheExtensions::complete_step(CodeCacheExtensionsSteps::CreateVM); 3692 3693 create_vm_timer.end(); 3694 #ifdef ASSERT 3695 vm_complete = true; 3696 #endif 3697 return JNI_OK; 3698 } 3699 3700 // type for the Agent_OnLoad and JVM_OnLoad entry points 3701 extern "C" { 3702 typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void ); 3703 } 3704 // Find a command line agent library and return its entry point for 3705 // -agentlib: -agentpath: -Xrun 3706 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array. 3707 static OnLoadEntry_t lookup_on_load(AgentLibrary agent, 3708 const char *on_load_symbols[], 3709 size_t num_symbol_entries) { 3710 OnLoadEntry_t on_load_entry = NULL; 3711 void *library = NULL; 3712 3713 if (!agent->valid()) { 3714 char buffer[JVM_MAXPATHLEN]; 3715 char ebuf[1024] = ""; 3716 const char *name = agent->name(); 3717 const char *msg = "Could not find agent library "; 3718 3719 // First check to see if agent is statically linked into executable 3720 if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) { 3721 library = agent->os_lib(); 3722 } else if (agent->is_absolute_path()) { 3723 library = os::dll_load(name, ebuf, sizeof ebuf); 3724 if (library == NULL) { 3725 const char sub_msg = " in absolute path, with error: "; 3726 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3727 char buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3728 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3729 // If we can't find the agent, exit. 3730 vm_exit_during_initialization(buf, NULL); 3731 FREE_C_HEAP_ARRAY(char, buf); 3732 } 3733 } else { 3734 // Try to load the agent from the standard dll directory 3735 if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(), 3736 name)) { 3737 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3738 } 3739 if (library == NULL) { // Try the local directory 3740 char ns[1] = {0}; 3741 if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) { 3742 library = os::dll_load(buffer, ebuf, sizeof ebuf); 3743 } 3744 if (library == NULL) { 3745 const char sub_msg = " on the library path, with error: "; 3746 size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1; 3747 char buf = NEW_C_HEAP_ARRAY(char, len, mtThread); 3748 jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf); 3749 // If we can't find the agent, exit. 3750 vm_exit_during_initialization(buf, NULL); 3751 FREE_C_HEAP_ARRAY(char, buf); 3752 } 3753 } 3754 } 3755 agent->set_os_lib(library); 3756 agent->set_valid(); 3757 } 3758 3759 // Find the OnLoad function. 3760 on_load_entry = 3761 CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent, 3762 false, 3763 on_load_symbols, 3764 num_symbol_entries)); 3765 return on_load_entry; 3766 } 3767 3768 // Find the JVM_OnLoad entry point 3769 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary agent) { 3770 const char on_load_symbols[] = JVM_ONLOAD_SYMBOLS; 3771 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char)); 3772 } 3773 3774 // Find the Agent_OnLoad entry point 3775 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary agent) { 3776 const char on_load_symbols[] = AGENT_ONLOAD_SYMBOLS; 3777 return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char)); 3778 } 3779 3780 // For backwards compatibility with -Xrun 3781 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be 3782 // treated like -agentpath: 3783 // Must be called before agent libraries are created 3784 void Threads::convert_vm_init_libraries_to_agents() { 3785 AgentLibrary agent; 3786 AgentLibrary next; 3787 3788 for (agent = Arguments::libraries(); agent != NULL; agent = next) { 3789 next = agent->next(); // cache the next agent now as this agent may get moved off this list 3790 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3791 3792 // If there is an JVM_OnLoad function it will get called later, 3793 // otherwise see if there is an Agent_OnLoad 3794 if (on_load_entry == NULL) { 3795 on_load_entry = lookup_agent_on_load(agent); 3796 if (on_load_entry != NULL) { 3797 // switch it to the agent list -- so that Agent_OnLoad will be called, 3798 // JVM_OnLoad won't be attempted and Agent_OnUnload will 3799 Arguments::convert_library_to_agent(agent); 3800 } else { 3801 vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name()); 3802 } 3803 } 3804 } 3805 } 3806 3807 // Create agents for -agentlib: -agentpath: and converted -Xrun 3808 // Invokes Agent_OnLoad 3809 // Called very early -- before JavaThreads exist 3810 void Threads::create_vm_init_agents() { 3811 extern struct JavaVM main_vm; 3812 AgentLibrary* agent; 3813 3814 JvmtiExport::enter_onload_phase(); 3815 3816 for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3817 OnLoadEntry_t on_load_entry = lookup_agent_on_load(agent); 3818 3819 if (on_load_entry != NULL) { 3820 // Invoke the Agent_OnLoad function 3821 jint err = (*on_load_entry)(&main_vm, agent->options(), NULL); 3822 if (err != JNI_OK) { 3823 vm_exit_during_initialization("agent library failed to init", agent->name()); 3824 } 3825 } else { 3826 vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name()); 3827 } 3828 } 3829 JvmtiExport::enter_primordial_phase(); 3830 } 3831 3832 extern "C" { 3833 typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *); 3834 } 3835 3836 void Threads::shutdown_vm_agents() { 3837 // Send any Agent_OnUnload notifications 3838 const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS; 3839 size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols); 3840 extern struct JavaVM main_vm; 3841 for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) { 3842 3843 // Find the Agent_OnUnload function. 3844 Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t, 3845 os::find_agent_function(agent, 3846 false, 3847 on_unload_symbols, 3848 num_symbol_entries)); 3849 3850 // Invoke the Agent_OnUnload function 3851 if (unload_entry != NULL) { 3852 JavaThread* thread = JavaThread::current(); 3853 ThreadToNativeFromVM ttn(thread); 3854 HandleMark hm(thread); 3855 (*unload_entry)(&main_vm); 3856 } 3857 } 3858 } 3859 3860 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries 3861 // Invokes JVM_OnLoad 3862 void Threads::create_vm_init_libraries() { 3863 extern struct JavaVM main_vm; 3864 AgentLibrary* agent; 3865 3866 for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) { 3867 OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent); 3868 3869 if (on_load_entry != NULL) { 3870 // Invoke the JVM_OnLoad function 3871 JavaThread* thread = JavaThread::current(); 3872 ThreadToNativeFromVM ttn(thread); 3873 HandleMark hm(thread); 3874 jint err = (on_load_entry)(&main_vm, agent->options(), NULL); 3875 if (err != JNI_OK) { 3876 vm_exit_during_initialization("-Xrun library failed to init", agent->name()); 3877 } 3878 } else { 3879 vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name()); 3880 } 3881 } 3882 } 3883 3884 JavaThread Threads::find_java_thread_from_java_tid(jlong java_tid) { 3885 assert(Threads_lock->owned_by_self(), "Must hold Threads_lock"); 3886 3887 JavaThread* java_thread = NULL; 3888 // Sequential search for now. Need to do better optimization later. 3889 for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) { 3890 oop tobj = thread->threadObj(); 3891 if (!thread->is_exiting() && 3892 tobj != NULL && 3893 java_tid == java_lang_Thread::thread_id(tobj)) { 3894 java_thread = thread; 3895 break; 3896 } 3897 } 3898 return java_thread; 3899 } 3900 3901 3902 // Last thread running calls java.lang.Shutdown.shutdown() 3903 void JavaThread::invoke_shutdown_hooks() { 3904 HandleMark hm(this); 3905 3906 // We could get here with a pending exception, if so clear it now. 3907 if (this->has_pending_exception()) { 3908 this->clear_pending_exception(); 3909 } 3910 3911 EXCEPTION_MARK; 3912 Klass* k = 3913 SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(), 3914 THREAD); 3915 if (k != NULL) { 3916 // SystemDictionary::resolve_or_null will return null if there was 3917 // an exception. If we cannot load the Shutdown class, just don't 3918 // call Shutdown.shutdown() at all. This will mean the shutdown hooks 3919 // and finalizers (if runFinalizersOnExit is set) won't be run. 3920 // Note that if a shutdown hook was registered or runFinalizersOnExit 3921 // was called, the Shutdown class would have already been loaded 3922 // (Runtime.addShutdownHook and runFinalizersOnExit will load it). 3923 instanceKlassHandle shutdown_klass (THREAD, k); 3924 JavaValue result(T_VOID); 3925 JavaCalls::call_static(&result, 3926 shutdown_klass, 3927 vmSymbols::shutdown_method_name(), 3928 vmSymbols::void_method_signature(), 3929 THREAD); 3930 } 3931 CLEAR_PENDING_EXCEPTION; 3932 } 3933 3934 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when 3935 // the program falls off the end of main(). Another VM exit path is through 3936 // vm_exit() when the program calls System.exit() to return a value or when 3937 // there is a serious error in VM. The two shutdown paths are not exactly 3938 // the same, but they share Shutdown.shutdown() at Java level and before_exit() 3939 // and VM_Exit op at VM level. 3940 // 3941 // Shutdown sequence: 3942 // + Shutdown native memory tracking if it is on 3943 // + Wait until we are the last non-daemon thread to execute 3944 // <-- every thing is still working at this moment --> 3945 // + Call java.lang.Shutdown.shutdown(), which will invoke Java level 3946 // shutdown hooks, run finalizers if finalization-on-exit 3947 // + Call before_exit(), prepare for VM exit 3948 // > run VM level shutdown hooks (they are registered through JVM_OnExit(), 3949 // currently the only user of this mechanism is File.deleteOnExit()) 3950 // > stop flat profiler, StatSampler, watcher thread, CMS threads, 3951 // post thread end and vm death events to JVMTI, 3952 // stop signal thread 3953 // + Call JavaThread::exit(), it will: 3954 // > release JNI handle blocks, remove stack guard pages 3955 // > remove this thread from Threads list 3956 // <-- no more Java code from this thread after this point --> 3957 // + Stop VM thread, it will bring the remaining VM to a safepoint and stop 3958 // the compiler threads at safepoint 3959 // <-- do not use anything that could get blocked by Safepoint --> 3960 // + Disable tracing at JNI/JVM barriers 3961 // + Set _vm_exited flag for threads that are still running native code 3962 // + Delete this thread 3963 // + Call exit_globals() 3964 // > deletes tty 3965 // > deletes PerfMemory resources 3966 // + Return to caller 3967 3968 bool Threads::destroy_vm() { 3969 JavaThread* thread = JavaThread::current(); 3970 3971 #ifdef ASSERT 3972 _vm_complete = false; 3973 #endif 3974 // Wait until we are the last non-daemon thread to execute 3975 { MutexLocker nu(Threads_lock); 3976 while (Threads::number_of_non_daemon_threads() > 1) 3977 // This wait should make safepoint checks, wait without a timeout, 3978 // and wait as a suspend-equivalent condition. 3979 // 3980 // Note: If the FlatProfiler is running and this thread is waiting 3981 // for another non-daemon thread to finish, then the FlatProfiler 3982 // is waiting for the external suspend request on this thread to 3983 // complete. wait_for_ext_suspend_completion() will eventually 3984 // timeout, but that takes time. Making this wait a suspend- 3985 // equivalent condition solves that timeout problem. 3986 // 3987 Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0, 3988 Mutex::_as_suspend_equivalent_flag); 3989 } 3990 3991 // Hang forever on exit if we are reporting an error. 3992 if (ShowMessageBoxOnError && is_error_reported()) { 3993 os::infinite_sleep(); 3994 } 3995 os::wait_for_keypress_at_exit(); 3996 3997 // run Java level shutdown hooks 3998 thread->invoke_shutdown_hooks(); 3999 4000 before_exit(thread); 4001 4002 thread->exit(true); 4003 4004 // Stop VM thread. 4005 { 4006 // 4945125 The vm thread comes to a safepoint during exit. 4007 // GC vm_operations can get caught at the safepoint, and the 4008 // heap is unparseable if they are caught. Grab the Heap_lock 4009 // to prevent this. The GC vm_operations will not be able to 4010 // queue until after the vm thread is dead. After this point, 4011 // we'll never emerge out of the safepoint before the VM exits. 4012 4013 MutexLocker ml(Heap_lock); 4014 4015 VMThread::wait_for_vm_thread_exit(); 4016 assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint"); 4017 VMThread::destroy(); 4018 } 4019 4020 // clean up ideal graph printers 4021 #if defined(COMPILER2) && !defined(PRODUCT) 4022 IdealGraphPrinter::clean_up(); 4023 #endif 4024 4025 // Now, all Java threads are gone except daemon threads. Daemon threads 4026 // running Java code or in VM are stopped by the Safepoint. However, 4027 // daemon threads executing native code are still running. But they 4028 // will be stopped at native=>Java/VM barriers. Note that we can't 4029 // simply kill or suspend them, as it is inherently deadlock-prone. 4030 4031 #ifndef PRODUCT 4032 // disable function tracing at JNI/JVM barriers 4033 TraceJNICalls = false; 4034 TraceJVMCalls = false; 4035 TraceRuntimeCalls = false; 4036 #endif 4037 4038 VM_Exit::set_vm_exited(); 4039 4040 notify_vm_shutdown(); 4041 4042 delete thread; 4043 4044 #if INCLUDE_JVMCI 4045 if (JVMCICounterSize > 0) { 4046 FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters); 4047 } 4048 #endif 4049 4050 // exit_globals() will delete tty 4051 exit_globals(); 4052 4053 return true; 4054 } 4055 4056 4057 jboolean Threads::is_supported_jni_version_including_1_1(jint version) { 4058 if (version == JNI_VERSION_1_1) return JNI_TRUE; 4059 return is_supported_jni_version(version); 4060 } 4061 4062 4063 jboolean Threads::is_supported_jni_version(jint version) { 4064 if (version == JNI_VERSION_1_2) return JNI_TRUE; 4065 if (version == JNI_VERSION_1_4) return JNI_TRUE; 4066 if (version == JNI_VERSION_1_6) return JNI_TRUE; 4067 if (version == JNI_VERSION_1_8) return JNI_TRUE; 4068 return JNI_FALSE; 4069 } 4070 4071 4072 void Threads::add(JavaThread* p, bool force_daemon) { 4073 // The threads lock must be owned at this point 4074 assert_locked_or_safepoint(Threads_lock); 4075 4076 // See the comment for this method in thread.hpp for its purpose and 4077 // why it is called here. 4078 p->initialize_queues(); 4079 p->set_next(_thread_list); 4080 _thread_list = p; 4081 _number_of_threads++; 4082 oop threadObj = p->threadObj(); 4083 bool daemon = true; 4084 // Bootstrapping problem: threadObj can be null for initial 4085 // JavaThread (or for threads attached via JNI) 4086 if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) { 4087 _number_of_non_daemon_threads++; 4088 daemon = false; 4089 } 4090 4091 ThreadService::add_thread(p, daemon); 4092 4093 // Possible GC point. 4094 Events::log(p, "Thread added: " INTPTR_FORMAT, p); 4095 } 4096 4097 void Threads::remove(JavaThread* p) { 4098 // Extra scope needed for Thread_lock, so we can check 4099 // that we do not remove thread without safepoint code notice 4100 { MutexLocker ml(Threads_lock); 4101 4102 assert(includes(p), "p must be present"); 4103 4104 JavaThread* current = _thread_list; 4105 JavaThread* prev = NULL; 4106 4107 while (current != p) { 4108 prev = current; 4109 current = current->next(); 4110 } 4111 4112 if (prev) { 4113 prev->set_next(current->next()); 4114 } else { 4115 _thread_list = p->next(); 4116 } 4117 _number_of_threads--; 4118 oop threadObj = p->threadObj(); 4119 bool daemon = true; 4120 if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) { 4121 _number_of_non_daemon_threads--; 4122 daemon = false; 4123 4124 // Only one thread left, do a notify on the Threads_lock so a thread waiting 4125 // on destroy_vm will wake up. 4126 if (number_of_non_daemon_threads() == 1) { 4127 Threads_lock->notify_all(); 4128 } 4129 } 4130 ThreadService::remove_thread(p, daemon); 4131 4132 // Make sure that safepoint code disregard this thread. This is needed since 4133 // the thread might mess around with locks after this point. This can cause it 4134 // to do callbacks into the safepoint code. However, the safepoint code is not aware 4135 // of this thread since it is removed from the queue. 4136 p->set_terminated_value(); 4137 } // unlock Threads_lock 4138 4139 // Since Events::log uses a lock, we grab it outside the Threads_lock 4140 Events::log(p, "Thread exited: " INTPTR_FORMAT, p); 4141 } 4142 4143 // Threads_lock must be held when this is called (or must be called during a safepoint) 4144 bool Threads::includes(JavaThread* p) { 4145 assert(Threads_lock->is_locked(), "sanity check"); 4146 ALL_JAVA_THREADS(q) { 4147 if (q == p) { 4148 return true; 4149 } 4150 } 4151 return false; 4152 } 4153 4154 // Operations on the Threads list for GC. These are not explicitly locked, 4155 // but the garbage collector must provide a safe context for them to run. 4156 // In particular, these things should never be called when the Threads_lock 4157 // is held by some other thread. (Note: the Safepoint abstraction also 4158 // uses the Threads_lock to guarantee this property. It also makes sure that 4159 // all threads gets blocked when exiting or starting). 4160 4161 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4162 ALL_JAVA_THREADS(p) { 4163 p->oops_do(f, cld_f, cf); 4164 } 4165 VMThread::vm_thread()->oops_do(f, cld_f, cf); 4166 } 4167 4168 void Threads::change_thread_claim_parity() { 4169 // Set the new claim parity. 4170 assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2, 4171 "Not in range."); 4172 _thread_claim_parity++; 4173 if (_thread_claim_parity == 3) _thread_claim_parity = 1; 4174 assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2, 4175 "Not in range."); 4176 } 4177 4178 #ifdef ASSERT 4179 void Threads::assert_all_threads_claimed() { 4180 ALL_JAVA_THREADS(p) { 4181 const int thread_parity = p->oops_do_parity(); 4182 assert((thread_parity == _thread_claim_parity), 4183 err_msg("Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity)); 4184 } 4185 } 4186 #endif // ASSERT 4187 4188 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) { 4189 int cp = Threads::thread_claim_parity(); 4190 ALL_JAVA_THREADS(p) { 4191 if (p->claim_oops_do(is_par, cp)) { 4192 p->oops_do(f, cld_f, cf); 4193 } 4194 } 4195 VMThread* vmt = VMThread::vm_thread(); 4196 if (vmt->claim_oops_do(is_par, cp)) { 4197 vmt->oops_do(f, cld_f, cf); 4198 } 4199 } 4200 4201 #if INCLUDE_ALL_GCS 4202 // Used by ParallelScavenge 4203 void Threads::create_thread_roots_tasks(GCTaskQueue* q) { 4204 ALL_JAVA_THREADS(p) { 4205 q->enqueue(new ThreadRootsTask(p)); 4206 } 4207 q->enqueue(new ThreadRootsTask(VMThread::vm_thread())); 4208 } 4209 4210 // Used by Parallel Old 4211 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) { 4212 ALL_JAVA_THREADS(p) { 4213 q->enqueue(new ThreadRootsMarkingTask(p)); 4214 } 4215 q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread())); 4216 } 4217 #endif // INCLUDE_ALL_GCS 4218 4219 void Threads::nmethods_do(CodeBlobClosure* cf) { 4220 ALL_JAVA_THREADS(p) { 4221 p->nmethods_do(cf); 4222 } 4223 VMThread::vm_thread()->nmethods_do(cf); 4224 } 4225 4226 void Threads::metadata_do(void f(Metadata*)) { 4227 ALL_JAVA_THREADS(p) { 4228 p->metadata_do(f); 4229 } 4230 } 4231 4232 class ThreadHandlesClosure : public ThreadClosure { 4233 void (_f)(Metadata); 4234 public: 4235 ThreadHandlesClosure(void f(Metadata*)) : _f(f) {} 4236 virtual void do_thread(Thread* thread) { 4237 thread->metadata_handles_do(_f); 4238 } 4239 }; 4240 4241 void Threads::metadata_handles_do(void f(Metadata*)) { 4242 // Only walk the Handles in Thread. 4243 ThreadHandlesClosure handles_closure(f); 4244 threads_do(&handles_closure); 4245 } 4246 4247 void Threads::deoptimized_wrt_marked_nmethods() { 4248 ALL_JAVA_THREADS(p) { 4249 p->deoptimized_wrt_marked_nmethods(); 4250 } 4251 } 4252 4253 4254 // Get count Java threads that are waiting to enter the specified monitor. 4255 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count, 4256 address monitor, 4257 bool doLock) { 4258 assert(doLock || SafepointSynchronize::is_at_safepoint(), 4259 "must grab Threads_lock or be at safepoint"); 4260 GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count); 4261 4262 int i = 0; 4263 { 4264 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4265 ALL_JAVA_THREADS(p) { 4266 if (!p->can_call_java()) continue; 4267 4268 address pending = (address)p->current_pending_monitor(); 4269 if (pending == monitor) { // found a match 4270 if (i < count) result->append(p); // save the first count matches 4271 i++; 4272 } 4273 } 4274 } 4275 return result; 4276 } 4277 4278 4279 JavaThread Threads::owning_thread_from_monitor_owner(address owner, 4280 bool doLock) { 4281 assert(doLock || 4282 Threads_lock->owned_by_self() || 4283 SafepointSynchronize::is_at_safepoint(), 4284 "must grab Threads_lock or be at safepoint"); 4285 4286 // NULL owner means not locked so we can skip the search 4287 if (owner == NULL) return NULL; 4288 4289 { 4290 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4291 ALL_JAVA_THREADS(p) { 4292 // first, see if owner is the address of a Java thread 4293 if (owner == (address)p) return p; 4294 } 4295 } 4296 // Cannot assert on lack of success here since this function may be 4297 // used by code that is trying to report useful problem information 4298 // like deadlock detection. 4299 if (UseHeavyMonitors) return NULL; 4300 4301 // If we didn't find a matching Java thread and we didn't force use of 4302 // heavyweight monitors, then the owner is the stack address of the 4303 // Lock Word in the owning Java thread's stack. 4304 // 4305 JavaThread the_owner = NULL; 4306 { 4307 MutexLockerEx ml(doLock ? Threads_lock : NULL); 4308 ALL_JAVA_THREADS(q) { 4309 if (q->is_lock_owned(owner)) { 4310 the_owner = q; 4311 break; 4312 } 4313 } 4314 } 4315 // cannot assert on lack of success here; see above comment 4316 return the_owner; 4317 } 4318 4319 // Threads::print_on() is called at safepoint by VM_PrintThreads operation. 4320 void Threads::print_on(outputStream* st, bool print_stacks, 4321 bool internal_format, bool print_concurrent_locks) { 4322 char buf[32]; 4323 st->print_raw_cr(os::local_time_string(buf, sizeof(buf))); 4324 4325 st->print_cr("Full thread dump %s (%s %s):", 4326 Abstract_VM_Version::vm_name(), 4327 Abstract_VM_Version::vm_release(), 4328 Abstract_VM_Version::vm_info_string()); 4329 st->cr(); 4330 4331 #if INCLUDE_SERVICES 4332 // Dump concurrent locks 4333 ConcurrentLocksDump concurrent_locks; 4334 if (print_concurrent_locks) { 4335 concurrent_locks.dump_at_safepoint(); 4336 } 4337 #endif // INCLUDE_SERVICES 4338 4339 ALL_JAVA_THREADS(p) { 4340 ResourceMark rm; 4341 p->print_on(st); 4342 if (print_stacks) { 4343 if (internal_format) { 4344 p->trace_stack(); 4345 } else { 4346 p->print_stack_on(st); 4347 } 4348 } 4349 st->cr(); 4350 #if INCLUDE_SERVICES 4351 if (print_concurrent_locks) { 4352 concurrent_locks.print_locks_on(p, st); 4353 } 4354 #endif // INCLUDE_SERVICES 4355 } 4356 4357 VMThread::vm_thread()->print_on(st); 4358 st->cr(); 4359 Universe::heap()->print_gc_threads_on(st); 4360 WatcherThread* wt = WatcherThread::watcher_thread(); 4361 if (wt != NULL) { 4362 wt->print_on(st); 4363 st->cr(); 4364 } 4365 CompileBroker::print_compiler_threads_on(st); 4366 st->flush(); 4367 } 4368 4369 // Threads::print_on_error() is called by fatal error handler. It's possible 4370 // that VM is not at safepoint and/or current thread is inside signal handler. 4371 // Don't print stack trace, as the stack may not be walkable. Don't allocate 4372 // memory (even in resource area), it might deadlock the error handler. 4373 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, 4374 int buflen) { 4375 bool found_current = false; 4376 st->print_cr("Java Threads: ( => current thread )"); 4377 ALL_JAVA_THREADS(thread) { 4378 bool is_current = (current == thread); 4379 found_current = found_current || is_current; 4380 4381 st->print("%s", is_current ? "=>" : " "); 4382 4383 st->print(PTR_FORMAT, thread); 4384 st->print(" "); 4385 thread->print_on_error(st, buf, buflen); 4386 st->cr(); 4387 } 4388 st->cr(); 4389 4390 st->print_cr("Other Threads:"); 4391 if (VMThread::vm_thread()) { 4392 bool is_current = (current == VMThread::vm_thread()); 4393 found_current = found_current || is_current; 4394 st->print("%s", current == VMThread::vm_thread() ? "=>" : " "); 4395 4396 st->print(PTR_FORMAT, VMThread::vm_thread()); 4397 st->print(" "); 4398 VMThread::vm_thread()->print_on_error(st, buf, buflen); 4399 st->cr(); 4400 } 4401 WatcherThread* wt = WatcherThread::watcher_thread(); 4402 if (wt != NULL) { 4403 bool is_current = (current == wt); 4404 found_current = found_current || is_current; 4405 st->print("%s", is_current ? "=>" : " "); 4406 4407 st->print(PTR_FORMAT, wt); 4408 st->print(" "); 4409 wt->print_on_error(st, buf, buflen); 4410 st->cr(); 4411 } 4412 if (!found_current) { 4413 st->cr(); 4414 st->print("=>" PTR_FORMAT " (exited) ", current); 4415 current->print_on_error(st, buf, buflen); 4416 st->cr(); 4417 } 4418 } 4419 4420 // Internal SpinLock and Mutex 4421 // Based on ParkEvent 4422 4423 // Ad-hoc mutual exclusion primitives: SpinLock and Mux 4424 // 4425 // We employ SpinLocks _only for low-contention, fixed-length 4426 // short-duration critical sections where we're concerned 4427 // about native mutex_t or HotSpot Mutex:: latency. 4428 // The mux construct provides a spin-then-block mutual exclusion 4429 // mechanism. 4430 // 4431 // Testing has shown that contention on the ListLock guarding gFreeList 4432 // is common. If we implement ListLock as a simple SpinLock it's common 4433 // for the JVM to devolve to yielding with little progress. This is true 4434 // despite the fact that the critical sections protected by ListLock are 4435 // extremely short. 4436 // 4437 // TODO-FIXME: ListLock should be of type SpinLock. 4438 // We should make this a 1st-class type, integrated into the lock 4439 // hierarchy as leaf-locks. Critically, the SpinLock structure 4440 // should have sufficient padding to avoid false-sharing and excessive 4441 // cache-coherency traffic. 4442 4443 4444 typedef volatile int SpinLockT; 4445 4446 void Thread::SpinAcquire(volatile int * adr, const char * LockName) { 4447 if (Atomic::cmpxchg (1, adr, 0) == 0) { 4448 return; // normal fast-path return 4449 } 4450 4451 // Slow-path : We've encountered contention -- Spin/Yield/Block strategy. 4452 TEVENT(SpinAcquire - ctx); 4453 int ctr = 0; 4454 int Yields = 0; 4455 for (;;) { 4456 while (*adr != 0) { 4457 ++ctr; 4458 if ((ctr & 0xFFF) == 0 || !os::is_MP()) { 4459 if (Yields > 5) { 4460 os::naked_short_sleep(1); 4461 } else { 4462 os::naked_yield(); 4463 ++Yields; 4464 } 4465 } else { 4466 SpinPause(); 4467 } 4468 } 4469 if (Atomic::cmpxchg(1, adr, 0) == 0) return; 4470 } 4471 } 4472 4473 void Thread::SpinRelease(volatile int * adr) { 4474 assert(*adr != 0, "invariant"); 4475 OrderAccess::fence(); // guarantee at least release consistency. 4476 // Roach-motel semantics. 4477 // It's safe if subsequent LDs and STs float "up" into the critical section, 4478 // but prior LDs and STs within the critical section can't be allowed 4479 // to reorder or float past the ST that releases the lock. 4480 // Loads and stores in the critical section - which appear in program 4481 // order before the store that releases the lock - must also appear 4482 // before the store that releases the lock in memory visibility order. 4483 // Conceptually we need a #loadstore|#storestore "release" MEMBAR before 4484 // the ST of 0 into the lock-word which releases the lock, so fence 4485 // more than covers this on all platforms. 4486 *adr = 0; 4487 } 4488 4489 // muxAcquire and muxRelease: 4490 // 4491 // * muxAcquire and muxRelease support a single-word lock-word construct. 4492 // The LSB of the word is set IFF the lock is held. 4493 // The remainder of the word points to the head of a singly-linked list 4494 // of threads blocked on the lock. 4495 // 4496 // * The current implementation of muxAcquire-muxRelease uses its own 4497 // dedicated Thread._MuxEvent instance. If we're interested in 4498 // minimizing the peak number of extant ParkEvent instances then 4499 // we could eliminate _MuxEvent and "borrow" _ParkEvent as long 4500 // as certain invariants were satisfied. Specifically, care would need 4501 // to be taken with regards to consuming unpark() "permits". 4502 // A safe rule of thumb is that a thread would never call muxAcquire() 4503 // if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently 4504 // park(). Otherwise the _ParkEvent park() operation in muxAcquire() could 4505 // consume an unpark() permit intended for monitorenter, for instance. 4506 // One way around this would be to widen the restricted-range semaphore 4507 // implemented in park(). Another alternative would be to provide 4508 // multiple instances of the PlatformEvent() for each thread. One 4509 // instance would be dedicated to muxAcquire-muxRelease, for instance. 4510 // 4511 // * Usage: 4512 // -- Only as leaf locks 4513 // -- for short-term locking only as muxAcquire does not perform 4514 // thread state transitions. 4515 // 4516 // Alternatives: 4517 // * We could implement muxAcquire and muxRelease with MCS or CLH locks 4518 // but with parking or spin-then-park instead of pure spinning. 4519 // * Use Taura-Oyama-Yonenzawa locks. 4520 // * It's possible to construct a 1-0 lock if we encode the lockword as 4521 // (List,LockByte). Acquire will CAS the full lockword while Release 4522 // will STB 0 into the LockByte. The 1-0 scheme admits stranding, so 4523 // acquiring threads use timers (ParkTimed) to detect and recover from 4524 // the stranding window. Thread/Node structures must be aligned on 256-byte 4525 // boundaries by using placement-new. 4526 // * Augment MCS with advisory back-link fields maintained with CAS(). 4527 // Pictorially: LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner. 4528 // The validity of the backlinks must be ratified before we trust the value. 4529 // If the backlinks are invalid the exiting thread must back-track through the 4530 // the forward links, which are always trustworthy. 4531 // * Add a successor indication. The LockWord is currently encoded as 4532 // (List, LOCKBIT:1). We could also add a SUCCBIT or an explicit _succ variable 4533 // to provide the usual futile-wakeup optimization. 4534 // See RTStt for details. 4535 // * Consider schedctl.sc_nopreempt to cover the critical section. 4536 // 4537 4538 4539 typedef volatile intptr_t MutexT; // Mux Lock-word 4540 enum MuxBits { LOCKBIT = 1 }; 4541 4542 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) { 4543 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4544 if (w == 0) return; 4545 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4546 return; 4547 } 4548 4549 TEVENT(muxAcquire - Contention); 4550 ParkEvent * const Self = Thread::current()->_MuxEvent; 4551 assert((intptr_t(Self) & LOCKBIT) == 0, "invariant"); 4552 for (;;) { 4553 int its = (os::is_MP() ? 100 : 0) + 1; 4554 4555 // Optional spin phase: spin-then-park strategy 4556 while (--its >= 0) { 4557 w = *Lock; 4558 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4559 return; 4560 } 4561 } 4562 4563 Self->reset(); 4564 Self->OnList = intptr_t(Lock); 4565 // The following fence() isn't _strictly necessary as the subsequent 4566 // CAS() both serializes execution and ratifies the fetched *Lock value. 4567 OrderAccess::fence(); 4568 for (;;) { 4569 w = *Lock; 4570 if ((w & LOCKBIT) == 0) { 4571 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4572 Self->OnList = 0; // hygiene - allows stronger asserts 4573 return; 4574 } 4575 continue; // Interference -- *Lock changed -- Just retry 4576 } 4577 assert(w & LOCKBIT, "invariant"); 4578 Self->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4579 if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break; 4580 } 4581 4582 while (Self->OnList != 0) { 4583 Self->park(); 4584 } 4585 } 4586 } 4587 4588 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) { 4589 intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0); 4590 if (w == 0) return; 4591 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4592 return; 4593 } 4594 4595 TEVENT(muxAcquire - Contention); 4596 ParkEvent * ReleaseAfter = NULL; 4597 if (ev == NULL) { 4598 ev = ReleaseAfter = ParkEvent::Allocate(NULL); 4599 } 4600 assert((intptr_t(ev) & LOCKBIT) == 0, "invariant"); 4601 for (;;) { 4602 guarantee(ev->OnList == 0, "invariant"); 4603 int its = (os::is_MP() ? 100 : 0) + 1; 4604 4605 // Optional spin phase: spin-then-park strategy 4606 while (--its >= 0) { 4607 w = *Lock; 4608 if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4609 if (ReleaseAfter != NULL) { 4610 ParkEvent::Release(ReleaseAfter); 4611 } 4612 return; 4613 } 4614 } 4615 4616 ev->reset(); 4617 ev->OnList = intptr_t(Lock); 4618 // The following fence() isn't _strictly necessary as the subsequent 4619 // CAS() both serializes execution and ratifies the fetched *Lock value. 4620 OrderAccess::fence(); 4621 for (;;) { 4622 w = *Lock; 4623 if ((w & LOCKBIT) == 0) { 4624 if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) { 4625 ev->OnList = 0; 4626 // We call ::Release while holding the outer lock, thus 4627 // artificially lengthening the critical section. 4628 // Consider deferring the ::Release() until the subsequent unlock(), 4629 // after we've dropped the outer lock. 4630 if (ReleaseAfter != NULL) { 4631 ParkEvent::Release(ReleaseAfter); 4632 } 4633 return; 4634 } 4635 continue; // Interference -- *Lock changed -- Just retry 4636 } 4637 assert(w & LOCKBIT, "invariant"); 4638 ev->ListNext = (ParkEvent *) (w & ~LOCKBIT); 4639 if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break; 4640 } 4641 4642 while (ev->OnList != 0) { 4643 ev->park(); 4644 } 4645 } 4646 } 4647 4648 // Release() must extract a successor from the list and then wake that thread. 4649 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme 4650 // similar to that used by ParkEvent::Allocate() and ::Release(). DMR-based 4651 // Release() would : 4652 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list. 4653 // (B) Extract a successor from the private list "in-hand" 4654 // (C) attempt to CAS() the residual back into *Lock over null. 4655 // If there were any newly arrived threads and the CAS() would fail. 4656 // In that case Release() would detach the RATs, re-merge the list in-hand 4657 // with the RATs and repeat as needed. Alternately, Release() might 4658 // detach and extract a successor, but then pass the residual list to the wakee. 4659 // The wakee would be responsible for reattaching and remerging before it 4660 // competed for the lock. 4661 // 4662 // Both "pop" and DMR are immune from ABA corruption -- there can be 4663 // multiple concurrent pushers, but only one popper or detacher. 4664 // This implementation pops from the head of the list. This is unfair, 4665 // but tends to provide excellent throughput as hot threads remain hot. 4666 // (We wake recently run threads first). 4667 // 4668 // All paths through muxRelease() will execute a CAS. 4669 // Release consistency -- We depend on the CAS in muxRelease() to provide full 4670 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations 4671 // executed within the critical section are complete and globally visible before the 4672 // store (CAS) to the lock-word that releases the lock becomes globally visible. 4673 void Thread::muxRelease(volatile intptr_t * Lock) { 4674 for (;;) { 4675 const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT); 4676 assert(w & LOCKBIT, "invariant"); 4677 if (w == LOCKBIT) return; 4678 ParkEvent * const List = (ParkEvent ) (w & ~LOCKBIT); 4679 assert(List != NULL, "invariant"); 4680 assert(List->OnList == intptr_t(Lock), "invariant"); 4681 ParkEvent * const nxt = List->ListNext; 4682 guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant"); 4683 4684 // The following CAS() releases the lock and pops the head element. 4685 // The CAS() also ratifies the previously fetched lock-word value. 4686 if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) { 4687 continue; 4688 } 4689 List->OnList = 0; 4690 OrderAccess::fence(); 4691 List->unpark(); 4692 return; 4693 } 4694 } 4695 4696 4697 void Threads::verify() { 4698 ALL_JAVA_THREADS(p) { 4699 p->verify(); 4700 } 4701 VMThread thread = VMThread::vm_thread(); 4702 if (thread != NULL) thread->verify(); 4703 }