doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).">

GeDS: Geometrically Designed Spline Regression (original) (raw)

Spline regression, generalized additive models and component-wise gradient boosting utilizing geometrically designed (GeD) splines. GeDS regression is a non-parametric method inspired by geometric principles, for fitting spline regression models with variable knots in one or two independent variables. It efficiently estimates the number of knots and their positions, as well as the spline order, assuming the response variable follows a distribution from the exponential family. GeDS models integrate the broader category of generalized (non-)linear models, offering a flexible approach to model complex relationships. A description of the method can be found in Kaishev et al. (2016) <doi:10.1007/s00180-015-0621-7> and Dimitrova et al. (2023) <doi:10.1016/j.amc.2022.127493>. Further extending its capabilities, GeDS's implementation includes generalized additive models (GAM) and functional gradient boosting (FGB), enabling versatile multivariate predictor modeling, as discussed in the forthcoming work of Dimitrova et al. (2025).

Version: 0.3.3
Depends: R (≥ 4.4.0)
Imports: doFuture, doParallel, doRNG, foreach, future, graphics, grDevices, MASS, Matrix, mboost, parallel, plot3D, Rcpp, splines, stats, utils
LinkingTo: Rcpp
Suggests: knitr, R.rsp, rmarkdown, testthat (≥ 3.0.0), TH.data
Published: 2025-06-30
DOI: 10.32614/CRAN.package.GeDS
Author: Dimitrina S. Dimitrova [aut], Vladimir K. Kaishev [aut], Andrea Lattuada [aut], Emilio L. Sáenz Guillén [aut, cre], Richard J. Verrall [aut]
Maintainer: Emilio L. Sáenz Guillén <Emilio.Saenz-Guillen at citystgeorges.ac.uk>
BugReports: https://github.com/emilioluissaenzguillen/GeDS/issues
License: GPL-3
URL: https://github.com/emilioluissaenzguillen/GeDS
NeedsCompilation: yes
Citation: GeDS citation info
Materials: README
CRAN checks: GeDS results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=GeDSto link to this page.