doi:10.1002/ecy.2403>.">

glmmfields: Generalized Linear Mixed Models with Robust Random Fields for Spatiotemporal Modeling (original) (raw)

Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.

Version:

0.1.8

Depends:

methods, R (≥ 3.4.0), Rcpp (≥ 0.12.18)

Imports:

assertthat, broom, broom.mixed, cluster, dplyr (≥ 0.8.0), forcats, ggplot2 (≥ 2.2.0), loo (≥ 2.0.0), mvtnorm, nlme, RcppParallel (≥ 5.0.1), reshape2, rstan (≥ 2.26.0), rstantools (≥ 2.1.1), tibble

LinkingTo:

BH (≥ 1.66.0), Rcpp (≥ 0.12.8), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0)

Suggests:

bayesplot, coda, knitr, parallel, rmarkdown, testthat, viridis

Published:

2023-10-20

DOI:

10.32614/CRAN.package.glmmfields

Author:

Sean C. Anderson [aut, cre], Eric J. Ward [aut], Trustees of Columbia University [cph]

Maintainer:

Sean C. Anderson

BugReports:

https://github.com/seananderson/glmmfields/issues

License:

GPL (≥ 3)

URL:

https://github.com/seananderson/glmmfields

NeedsCompilation:

yes

SystemRequirements:

GNU make

Citation:

glmmfields citation info

Materials:

NEWS

In views:

MixedModels

CRAN checks:

glmmfields results