glmmfields: Generalized Linear Mixed Models with Robust Random Fields for Spatiotemporal Modeling (original) (raw)
Implements Bayesian spatial and spatiotemporal models that optionally allow for extreme spatial deviations through time. 'glmmfields' uses a predictive process approach with random fields implemented through a multivariate-t distribution instead of the usual multivariate normal. Sampling is conducted with 'Stan'. References: Anderson and Ward (2019) <doi:10.1002/ecy.2403>.
Version:
0.1.8
Depends:
methods, R (≥ 3.4.0), Rcpp (≥ 0.12.18)
Imports:
assertthat, broom, broom.mixed, cluster, dplyr (≥ 0.8.0), forcats, ggplot2 (≥ 2.2.0), loo (≥ 2.0.0), mvtnorm, nlme, RcppParallel (≥ 5.0.1), reshape2, rstan (≥ 2.26.0), rstantools (≥ 2.1.1), tibble
LinkingTo:
BH (≥ 1.66.0), Rcpp (≥ 0.12.8), RcppEigen (≥ 0.3.3.3.0), RcppParallel (≥ 5.0.1), rstan (≥ 2.26.0), StanHeaders (≥ 2.26.0)
Suggests:
bayesplot, coda, knitr, parallel, rmarkdown, testthat, viridis
Published:
2023-10-20
DOI:
10.32614/CRAN.package.glmmfields
Author:
Sean C. Anderson [aut, cre], Eric J. Ward [aut], Trustees of Columbia University [cph]
Maintainer:
Sean C. Anderson
BugReports:
https://github.com/seananderson/glmmfields/issues
License:
URL:
https://github.com/seananderson/glmmfields
NeedsCompilation:
yes
SystemRequirements:
GNU make
Citation:
Materials:
In views:
CRAN checks: