doi:10.1111/ajps.12779>.">

keyATM: Keyword Assisted Topic Models (original) (raw)

Fits keyword assisted topic models (keyATM) using collapsed Gibbs samplers. The keyATM combines the latent dirichlet allocation (LDA) models with a small number of keywords selected by researchers in order to improve the interpretability and topic classification of the LDA. The keyATM can also incorporate covariates and directly model time trends. The keyATM is proposed in Eshima, Imai, and Sasaki (2024) <doi:10.1111/ajps.12779>.

Version:

0.5.4

Depends:

R (≥ 4.0)

Imports:

Rcpp (≥ 1.0.7), cli (≥ 3.6.1), dplyr (≥ 1.1.0), fastmap, future.apply, fs (≥ 1.6.0), ggplot2 (≥ 3.4.0), ggrepel, magrittr, Matrix, matrixNormal (≥ 0.1.0), MASS, pgdraw, purrr (≥ 1.0.0), quanteda (≥ 3.3.0), rlang (≥ 1.1.0), stringr, tibble, tidyr (≥ 1.0.0), tidyselect (≥ 1.2.0)

LinkingTo:

Rcpp, RcppEigen, cli

Suggests:

readtext, stats, testthat (≥ 3.1.5)

Published:

2025-07-21

DOI:

10.32614/CRAN.package.keyATM

Author:

Shusei Eshima ORCID iD [aut, cre], Tomoya Sasaki [aut], Kosuke Imai [aut], Chung-hong Chan ORCID iD [ctb], Romain François ORCID iD [ctb], Martin FeldkircherORCID iD [ctb], William Lowe [ctb], Seo-young Silvia KimORCID iD [ctb]

Maintainer:

Shusei Eshima

BugReports:

https://github.com/keyATM/keyATM/issues

License:

GPL-3

URL:

https://keyatm.github.io/keyATM/

NeedsCompilation:

yes

SystemRequirements:

C++17

Citation:

keyATM citation info

Materials:

NEWS

CRAN checks:

keyATM results