doi:10.1198/016214504000001538> or the regression coefficient estimates (Jones and Crowley, 1992) <doi:10.2307/2336782>. The marginal distribution for the truncation time and the event time are completely left unspecified. The methodology is applied to survival curve estimation and regression analysis.">

tranSurv: Transformation-Based Regression under Dependent Truncation (original) (raw)

A latent, quasi-independent truncation time is assumed to be linked with the observed dependent truncation time, the event time, and an unknown transformation parameter via a structural transformation model. The transformation parameter is chosen to minimize the conditional Kendall's tau (Martin and Betensky, 2005) <doi:10.1198/016214504000001538> or the regression coefficient estimates (Jones and Crowley, 1992) <doi:10.2307/2336782>. The marginal distribution for the truncation time and the event time are completely left unspecified. The methodology is applied to survival curve estimation and regression analysis.

Version: 1.2.4
Imports: rootSolve, truncSP, survival, SQUAREM, methods
Suggests: MASS, boot
Published: 2025-09-22
DOI: 10.32614/CRAN.package.tranSurv
Author: Sy Han (Steven) Chiou [aut, cre], Jing Qian [aut]
Maintainer: Sy Han (Steven) Chiou
BugReports: https://github.com/stc04003/tranSurv/issues
License: GPL (≥ 3)
URL: https://github.com/stc04003/tranSurv
NeedsCompilation: yes
Materials: NEWS
CRAN checks: tranSurv results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=tranSurvto link to this page.