mlr: Machine Learning in R (original) (raw)
Interface to a large number of classification and regression techniques, including machine-readable parameter descriptions. There is also an experimental extension for survival analysis, clustering and general, example-specific cost-sensitive learning. Generic resampling, including cross-validation, bootstrapping and subsampling. Hyperparameter tuning with modern optimization techniques, for single- and multi-objective problems. Filter and wrapper methods for feature selection. Extension of basic learners with additional operations common in machine learning, also allowing for easy nested resampling. Most operations can be parallelized.
Version:
2.19.2
Depends:
ParamHelpers (≥ 1.10), R (≥ 3.0.2)
Imports:
backports (≥ 1.1.0), BBmisc (≥ 1.11), checkmate (≥ 1.8.2), data.table (≥ 1.12.4), ggplot2, methods, parallelMap (≥ 1.3), stats, stringi, survival, utils, XML
Suggests:
ada, adabag, batchtools, bit64, brnn, bst, C50, care, caret (≥ 6.0-57), class, clue, cluster, ClusterR, clusterSim (≥ 0.44-5), cmaes, cowplot, crs, Cubist, deepnet, DiceKriging, e1071, earth, elasticnet, emoa, evtree, fda.usc, FDboost, FNN, forecast (≥ 8.3), fpc, frbs, FSelector, FSelectorRcpp (≥ 0.3.5), gbm, GenSA, ggpubr, glmnet, GPfit, h2o (≥ 3.6.0.8), Hmisc, irace (≥ 2.0), kernlab, kknn, klaR, knitr, laGP, LiblineaR, lintr (≥ 1.0.0.9001), MASS, mboost, mco, mda, memoise, mlbench, mldr, mlrMBO, modeltools, mRMRe, neuralnet, nnet, numDeriv, pamr, pander, party, pec, penalized (≥ 0.9-47), pls, PMCMRplus, praznik (≥ 5.0.0), randomForest, ranger (≥ 0.8.0), rappdirs, refund, rex, rFerns, rgenoud, rmarkdown, Rmpi, ROCR, rotationForest, rpart, RRF, rsm, RSNNS, rucrdtw, RWeka, sda, sf, smoof, sparseLDA, stepPlr, survAUC, svglite, testthat, tgp, TH.data, tidyr, tsfeatures, vdiffr, wavelets, xgboost (≥ 0.7)
Published:
2024-06-12
DOI:
Author:
Bernd Bischl [aut], Michel Lang [aut], Lars Kotthoff [aut], Patrick Schratz [aut], Julia Schiffner [aut], Jakob Richter [aut], Zachary Jones [aut], Giuseppe Casalicchio [aut], Mason Gallo [aut], Jakob Bossek [ctb], Erich Studerus [ctb], Leonard Judt [ctb], Tobias Kuehn [ctb], Pascal Kerschke [ctb], Florian Fendt [ctb], Philipp Probst [ctb], Xudong Sun [ctb], Janek Thomas [ctb], Bruno Vieira [ctb], Laura Beggel [ctb], Quay Au [ctb], Martin Binder [aut, cre], Florian Pfisterer [ctb], Stefan Coors [ctb], Steve Bronder [ctb], Alexander Engelhardt [ctb], Christoph Molnar [ctb], Annette Spooner [ctb]
Maintainer:
Martin Binder <mlr.developer at mb706.com>
BugReports:
https://github.com/mlr-org/mlr/issues
License:
BSD_2_clause + file
URL:
https://mlr.mlr-org.com, https://github.com/mlr-org/mlr
NeedsCompilation:
yes
SystemRequirements:
gdal (optional), geos (optional), proj (optional), udunits (optional), gsl (optional), gmp (optional), glu (optional), jags (optional), mpfr (optional), openmpi (optional)
Citation:
Materials:
CRAN checks: