doi:10.32614/RJ-2023-004>.">

remap: Regional Spatial Modeling with Continuous Borders (original) (raw)

Automatically creates separate regression models for different spatial regions. The prediction surface is smoothed using a regional border smoothing method. If regional models are continuous, the resulting prediction surface is continuous across the spatial dimensions, even at region borders. Methodology is described in Wagstaff and Bean (2023) <doi:10.32614/RJ-2023-004>.

Version: 0.3.2
Depends: R (≥ 4.1.0)
Imports: graphics (≥ 4.1.0), methods (≥ 4.1.0), parallel (≥ 4.1.0), sf (≥ 1.0.0), stats (≥ 4.1.0), units (≥ 0.6.7), utils (≥ 4.1.0)
Suggests: dplyr (≥ 1.0.2), ggplot2 (≥ 3.3.2), knitr (≥ 1.30), maps (≥ 3.3.0), mgcv (≥ 1.8.33), rmarkdown (≥ 2.5)
Published: 2025-01-09
DOI: 10.32614/CRAN.package.remap
Author: Jadon Wagstaff [aut, cre], Brennan Bean [aut]
Maintainer: Jadon Wagstaff
BugReports: https://github.com/jadonwagstaff/remap/issues
License: GPL-3
URL: https://github.com/jadonwagstaff/remap
NeedsCompilation: no
Citation: remap citation info
Materials: NEWS
CRAN checks: remap results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=remapto link to this page.