remap: Regional Spatial Modeling with Continuous Borders (original) (raw)
Automatically creates separate regression models for different spatial regions. The prediction surface is smoothed using a regional border smoothing method. If regional models are continuous, the resulting prediction surface is continuous across the spatial dimensions, even at region borders. Methodology is described in Wagstaff and Bean (2023) <doi:10.32614/RJ-2023-004>.
Version: | 0.3.2 |
---|---|
Depends: | R (≥ 4.1.0) |
Imports: | graphics (≥ 4.1.0), methods (≥ 4.1.0), parallel (≥ 4.1.0), sf (≥ 1.0.0), stats (≥ 4.1.0), units (≥ 0.6.7), utils (≥ 4.1.0) |
Suggests: | dplyr (≥ 1.0.2), ggplot2 (≥ 3.3.2), knitr (≥ 1.30), maps (≥ 3.3.0), mgcv (≥ 1.8.33), rmarkdown (≥ 2.5) |
Published: | 2025-01-09 |
DOI: | 10.32614/CRAN.package.remap |
Author: | Jadon Wagstaff [aut, cre], Brennan Bean [aut] |
Maintainer: | Jadon Wagstaff |
BugReports: | https://github.com/jadonwagstaff/remap/issues |
License: | GPL-3 |
URL: | https://github.com/jadonwagstaff/remap |
NeedsCompilation: | no |
Citation: | remap citation info |
Materials: | NEWS |
CRAN checks: | remap results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=remapto link to this page.