doi:10.48550/arXiv.2412.16065>.">

BayesPIM: Bayesian Prevalence-Incidence Mixture Model (original) (raw)

Models time-to-event data from interval-censored screening studies. It accounts for latent prevalence at baseline and incorporates misclassification due to imperfect test sensitivity. For usage details, see the package vignette ("BayesPIM_intro"). Further details can be found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024), "A Bayesian prevalence-incidence mixture model for screening outcomes with misclassification", <doi:10.48550/arXiv.2412.16065>.

Version: 1.0.0
Depends: R (≥ 3.5.0), coda
Imports: Rcpp, mvtnorm, MASS, ggamma, doParallel, foreach, parallel, actuar
LinkingTo: Rcpp
Suggests: knitr, rmarkdown
Published: 2025-03-22
DOI: 10.32614/CRAN.package.BayesPIM
Author: Thomas Klausch [aut, cre]
Maintainer: Thomas Klausch <t.klausch at amsterdamumc.nl>
BugReports: https://github.com/thomasklausch2/BayesPIM/issues
License: MIT + file
URL: https://github.com/thomasklausch2/bayespim
NeedsCompilation: yes
Materials: README
CRAN checks: BayesPIM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=BayesPIMto link to this page.