DynTxRegime: Methods for Estimating Optimal Dynamic Treatment Regimes (original) (raw)

Methods to estimate dynamic treatment regimes using Interactive Q-Learning, Q-Learning, weighted learning, and value-search methods based on Augmented Inverse Probability Weighted Estimators and Inverse Probability Weighted Estimators. Dynamic Treatment Regimes: Statistical Methods for Precision Medicine, Tsiatis, A. A., Davidian, M. D., Holloway, S. T., and Laber, E. B., Chapman & Hall/CRC Press, 2020, ISBN:978-1-4987-6977-8.

Version: 4.16
Depends: methods, modelObj, stats
Imports: kernlab, rgenoud, dfoptim
Suggests: MASS, rpart, nnet
Published: 2025-05-03
DOI: 10.32614/CRAN.package.DynTxRegime
Author: Shannon T. Holloway [aut, cre], E. B. Laber [aut], K. A. Linn [aut], B. Zhang [aut], M. Davidian [aut], A. A. Tsiatis [aut]
Maintainer: Shannon T. Holloway <shannon.t.holloway at gmail.com>
License: GPL-2
NeedsCompilation: no
Materials:
In views: CausalInference
CRAN checks: DynTxRegime results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=DynTxRegimeto link to this page.