doi:10.1007/978-3-319-77179-3_75>, Zabolotnii, Tkachenko, and Warsza (2022) <doi:10.1007/978-3-031-03502-9_37>, and Zabolotnii, Tkachenko, and Warsza (2023) <doi:10.1007/978-3-031-25844-2_21>.">

EstemPMM: Polynomial Maximization Method for Non-Gaussian Regression (original) (raw)

Implements the Polynomial Maximization Method ('PMM') for parameter estimation in linear and time series models when error distributions deviate from normality. The 'PMM2' variant achieves lower variance parameter estimates compared to ordinary least squares ('OLS') when errors exhibit significant skewness. Includes methods for linear regression, 'AR'/'MA'/'ARMA'/'ARIMA' models, and bootstrap inference. Methodology described in Zabolotnii, Warsza, and Tkachenko (2018) <doi:10.1007/978-3-319-77179-3_75>, Zabolotnii, Tkachenko, and Warsza (2022) <doi:10.1007/978-3-031-03502-9_37>, and Zabolotnii, Tkachenko, and Warsza (2023) <doi:10.1007/978-3-031-25844-2_21>.

Version: 0.1.1
Depends: R (≥ 3.5.0)
Imports: methods, stats, graphics, utils
Suggests: dplyr, ggplot2, gridExtra, testthat (≥ 3.0.0), rmarkdown, knitr, MASS
Published: 2025-11-07
DOI: 10.32614/CRAN.package.EstemPMM
Author: Serhii Zabolotnii ORCID iD [aut, cre]
Maintainer: Serhii Zabolotnii
BugReports: https://github.com/SZabolotnii/EstemPMM/issues
License: GPL-3
URL: https://github.com/SZabolotnii/EstemPMM
NeedsCompilation: no
Materials: README, NEWS
CRAN checks: EstemPMM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=EstemPMMto link to this page.