doi:10.32614/RJ-2016-019> and the foundation-model overview by Bommasani et al. (2021) <doi:10.48550/arXiv.2108.07258>.">

FakeDataR: Privacy-Preserving Synthetic Data for 'LLM' Workflows (original) (raw)

Generate privacy-preserving synthetic datasets that mirror structure, types, factor levels, and missingness; export bundles for 'LLM' workflows (data plus 'JSON' schema and guidance); and build fake data directly from 'SQL' database tables without reading real rows. Methods are related to approaches in Nowok, Raab and Dibben (2016) <doi:10.32614/RJ-2016-019> and the foundation-model overview by Bommasani et al. (2021) <doi:10.48550/arXiv.2108.07258>.

Version: 0.2.2
Imports: dplyr, jsonlite, zip
Suggests: readr, testthat (≥ 3.0.0), knitr, rmarkdown, DBI, RSQLite, tibble, nycflights13, palmerpenguins, gapminder, arrow, withr
Published: 2025-10-06
DOI: 10.32614/CRAN.package.FakeDataR
Author: Zobaer Ahmed [aut, cre]
Maintainer: Zobaer Ahmed
BugReports: https://github.com/zobaer09/FakeDataR/issues
License: MIT + file
URL: https://zobaer09.github.io/FakeDataR/,https://github.com/zobaer09/FakeDataR
NeedsCompilation: no
Language: en-US
Materials: README, NEWS
CRAN checks: FakeDataR results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=FakeDataRto link to this page.