Help for package GWnnegPCA (original ) (raw )
Type:
Package
Title:
Geographically Weighted Non-Negative Principal Components Analysis
Version:
0.0.5
Description:
Implements a geographically weighted non-negative principal components analysis, which consists of the fusion of geographically weighted and sparse non-negative principal components analyses <doi:10.17608/k6.auckland.9850826.v1 >.
License:
GPL (≥ 3)
URL:
https://github.com/naru-T/GWnnegPCA
BugReports:
https://github.com/naru-T/GWnnegPCA/issues
Depends:
R (≥ 3.5.0)
Imports:
geodist, methods, nsprcomp, sf
Suggests:
testthat (≥ 3.0.0)
Config/testthat/edition:
3
Encoding:
UTF-8
Language:
en-US
RoxygenNote:
7.3.2
SystemRequirements:
C++11, GDAL (>= 2.0.1), GEOS (>= 3.4.0), PROJ (>= 4.8.0)
NeedsCompilation:
no
Packaged:
2025-02-05 13:20:19 UTC; nt
Author:
Narumasa Tsutsumida [aut, cre]
Maintainer:
Narumasa Tsutsumida rsnaru.jp@gmail.com
Repository:
CRAN
Date/Publication:
2025-02-05 13:40:05 UTC
Geographically Weighted Non-negative Principal Component Analysis DescriptionImplementation of geographically weighted non-negative principal component analysis, which consists of the fusion of GWPCA and sparse non-negative PCA.
Usagegw_nsprcomp(
data,
elocat,
vars,
bw,
k = 2,
kernel = "gaussian",
adaptive = TRUE,
p = 2,
theta = 0,
longlat = FALSE,
geodisic_measure = "cheap",
dMat = NULL,
n.obs = NA,
n.iter = 1,
ncomp = k,
nneg = TRUE,
localcenter = TRUE,
localscale = FALSE,
...
)
Arguments
data
An sf object containing the spatial data and attributes for analysis
elocat
Two-column numeric array or sf object for providing evaluation locations
vars
Character vector of variable names to be used in the analysis
bw
Bandwidth used in the weighting function
k
The number of retained components (default: 2)
kernel
Kernel function type: "gaussian", "exponential", "bisquare", "tricube", or "boxcar"
adaptive
If TRUE, calculate adaptive kernel (default: TRUE)
p
Power of the Minkowski distance (default: 2)
theta
Angle in radians to rotate coordinate system (default: 0)
longlat
If TRUE, great circle distances will be calculated (default: FALSE)
geodisic_measure
Method for geodesic distance calculation (default: "cheap")
dMat
Pre-specified distance matrix (default: NULL)
n.obs
Number of observations for correlation matrix (default: NA)
n.iter
Number of bootstrap iterations (default: 1)
ncomp
Number of principal components to compute (default: k)
nneg
If TRUE, constrain loadings to be non-negative (default: TRUE)
localcenter
If TRUE, center local weighted x (default: TRUE)
localscale
If TRUE, scale local weighted x (default: FALSE)
...
Additional arguments passed to methods
ValueA list containing:
loadings
The localized loadings matrix
score
The PC score matrix from the localized non-negative PCA
sdev
The localized standard deviation vector of the principal components
Examples# Read North Carolina SIDS data from sf package
nc <- sf::st_read(system.file("shape/nc.shp", package="sf"), quiet = TRUE)
# Scale selected variables for analysis
vars_to_use <- c("SID74", "NWBIR74", "BIR74")
Data.scaled <- scale(as.matrix(sf::st_drop_geometry(nc[, vars_to_use])))
# Create sf object with scaled data
nc_scaled <- nc
nc_scaled[vars_to_use] <- Data.scaled
gwnnegpca_ans <- gw_nsprcomp(
data = nc_scaled,
vars = vars_to_use,
bw = 0.25,
k = 3,
longlat = TRUE,
kernel = "bisquare",
adaptive = TRUE,
nneg = TRUE,
geodisic_measure = "geodesic"
)