https://www.cambridge.org/core/journals/american-political-science-review/article/measurement-that-matches-theory-theorydriven-identification-in-item-response-theory-models/395DA1DFE3DCD7B866DC053D7554A30B>.">

IRTM: Theory-Driven Item Response Theory (IRT) Models (original) (raw)

IRT-M is a semi-supervised approach based on Bayesian Item Response Theory that produces theoretically identified underlying dimensions from input data and a constraints matrix. The methodology is fully described in 'Morucci et al. (2024), "Measurement That Matches Theory: Theory-Driven Identification in Item Response Theory Models"'. Details are available at <https://www.cambridge.org/core/journals/american-political-science-review/article/measurement-that-matches-theory-theorydriven-identification-in-item-response-theory-models/395DA1DFE3DCD7B866DC053D7554A30B>.

Version: 0.0.1.1
Depends: truncnorm, tmvtnorm, utils, RcppProgress, RcppDist, ggplot2, R (≥ 3.5.0)
Imports: coda, Rcpp, RcppArmadillo, ggridges, rlang, dplyr, reshape2
LinkingTo: Rcpp, RcppArmadillo, RcppDist, RcppProgress
Suggests: knitr, rmarkdown, testthat (≥ 3.0.0), RColorBrewer, fastDummies, ggrepel, tidyverse, spelling
Published: 2025-04-19
DOI: 10.32614/CRAN.package.IRTM
Author: Marco Morucci [aut], Margaret Foster ORCID iD [cre], David Siegel ORCID iD [aut]
Maintainer: Margaret Foster <m.jenkins.foster at gmail.com>
License: MIT + file
NeedsCompilation: yes
Language: en-US
Materials: README
CRAN checks: IRTM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=IRTMto link to this page.