doi:10.1287/opre.2019.1919>.">

L0Learn: Fast Algorithms for Best Subset Selection (original) (raw)

Highly optimized toolkit for approximately solving L0-regularized learning problems (a.k.a. best subset selection). The algorithms are based on coordinate descent and local combinatorial search. For more details, check the paper by Hazimeh and Mazumder (2020) <doi:10.1287/opre.2019.1919>.

Version: 2.1.0
Depends: R (≥ 3.3.0)
Imports: Rcpp (≥ 0.12.13), Matrix, methods, ggplot2, reshape2, MASS
LinkingTo: Rcpp, RcppArmadillo
Suggests: knitr, rmarkdown, testthat, pracma, raster, covr
Published: 2023-03-07
DOI: 10.32614/CRAN.package.L0Learn
Author: Hussein Hazimeh [aut, cre], Rahul Mazumder [aut], Tim Nonet [aut]
Maintainer: Hussein Hazimeh
BugReports: https://github.com/hazimehh/L0Learn/issues
License: MIT + file
URL: https://github.com/hazimehh/L0Learn https://pubsonline.informs.org/doi/10.1287/opre.2019.1919
NeedsCompilation: yes
Materials:
CRAN checks: L0Learn results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=L0Learnto link to this page.