doi:10.1080/01621459.2016.1273115>. Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) <doi:10.18637/jss.v093.i05>.">

MFPCA: Multivariate Functional Principal Component Analysis for Data Observed on Different Dimensional Domains (original) (raw)

Calculate a multivariate functional principal component analysis for data observed on different dimensional domains. The estimation algorithm relies on univariate basis expansions for each element of the multivariate functional data (Happ & Greven, 2018) <doi:10.1080/01621459.2016.1273115>. Multivariate and univariate functional data objects are represented by S4 classes for this type of data implemented in the package 'funData'. For more details on the general concepts of both packages and a case study, see Happ-Kurz (2020) <doi:10.18637/jss.v093.i05>.

Version: 1.3-11
Depends: R (≥ 3.2.0), funData (≥ 1.3-4)
Imports: abind, foreach, irlba, Matrix (≥ 1.5-0), methods, mgcv (≥ 1.8-33), plyr, stats
Suggests: covr, fda, testthat (≥ 2.0.0)
Published: 2025-08-27
DOI: 10.32614/CRAN.package.MFPCA
Author: Clara Happ-Kurz ORCID iD [aut, cre]
Maintainer: Clara Happ-Kurz <chk_R at gmx.de>
License: GPL-2
URL: https://github.com/ClaraHapp/MFPCA
NeedsCompilation: yes
SystemRequirements: libfftw3 (>= 3.3.4)
Citation: MFPCA citation info
Materials: README, NEWS
In views: FunctionalData
CRAN checks: MFPCA results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=MFPCAto link to this page.