MUVR2: Multivariate Methods with Unbiased Variable Selection (original) (raw)
Predictive multivariate modelling for metabolomics. Types: Classification and regression. Methods: Partial Least Squares, Random Forest ans Elastic Net Data structures: Paired and unpaired Validation: repeated double cross-validation (Westerhuis et al. (2008)<doi:10.1007/s11306-007-0099-6>, Filzmoser et al. (2009)<doi:10.1002/cem.1225>) Variable selection: Performed internally, through tuning in the inner cross-validation loop.
| Version: | 0.1.0 |
|---|---|
| Depends: | R (≥ 3.5.0) |
| Imports: | stats, graphics, randomForest, ranger, pROC, doParallel, foreach, caret, glmnet, splines, dplyr, psych, magrittr, mgcv, grDevices, parallel |
| Suggests: | testthat (≥ 3.0.0) |
| Published: | 2024-09-16 |
| DOI: | 10.32614/CRAN.package.MUVR2 |
| Author: | Carl Brunius [aut], Yingxiao Yan [aut, cre] |
| Maintainer: | Yingxiao Yan |
| BugReports: | https://github.com/MetaboComp/MUVR2/issues |
| License: | GPL-3 |
| URL: | https://github.com/MetaboComp/MUVR2 |
| NeedsCompilation: | no |
| Materials: | README |
| CRAN checks: | MUVR2 results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=MUVR2to link to this page.