doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.">

PCovR: Principal Covariates Regression (original) (raw)

Analyzing regression data with many and/or highly collinear predictor variables, by simultaneously reducing the predictor variables to a limited number of components and regressing the criterion variables on these components (de Jong S. & Kiers H. A. L. (1992) <doi:10.1016/0169-7439(92)80100-I>). Several rotation and model selection options are provided.

Version: 2.7.2
Depends: GPArotation, ThreeWay, MASS, stats, graphics, Matrix
Published: 2023-10-26
DOI: 10.32614/CRAN.package.PCovR
Author: Marlies Vervloet [aut, cre], Henk Kiers [aut], Eva Ceulemans [ctb]
Maintainer: Kristof Meers <kristof.meers+cran at kuleuven.be>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
CRAN checks: PCovR results

Documentation:

Downloads:

Reverse dependencies:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=PCovRto link to this page.