PFLR: Estimating Penalized Functional Linear Regression (original) (raw)
Implementation of commonly used penalized functional linear regression models, including the Smooth and Locally Sparse (SLoS) method by Lin et al. (2016) <doi:10.1080/10618600.2016.1195273>, Nested Group bridge Regression (NGR) method by Guan et al. (2020) <doi:10.1080/10618600.2020.1713797>, Functional Linear Regression That's interpretable (FLIRTI) by James et al. (2009) <doi:10.1214/08-AOS641>, and the Penalized B-spline regression method.
| Version: | 1.1.0 |
|---|---|
| Depends: | R (≥ 3.5.0) |
| Imports: | fda, MASS, flare, psych, glmnet, stats, utils |
| Published: | 2024-08-22 |
| DOI: | 10.32614/CRAN.package.PFLR |
| Author: | Tianyu Guan [aut], Haolun Shi [aut, cre, cph], Rob Cameron [aut], Zhenhua Lin [aut] |
| Maintainer: | Haolun Shi |
| License: | GPL-2 |
| NeedsCompilation: | no |
| CRAN checks: | PFLR results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=PFLRto link to this page.