ReSurv: Machine Learning Models for Predicting Claim Counts (original) (raw)
Prediction of claim counts using the feature based development factors introduced in the manuscript Hiabu M., Hofman E. and Pittarello G. (2023) <doi:10.48550/arXiv.2312.14549>. Implementation of Neural Networks, Extreme Gradient Boosting, and Cox model with splines to optimise the partial log-likelihood of proportional hazard models.
| Version: | 1.0.0 |
|---|---|
| Depends: | tidyverse |
| Imports: | stats, dplyr, dtplyr, fastDummies, forecast, data.table, purrr, tidyr, tibble, ggplot2, survival, reshape2, bshazard, SynthETIC, rpart, reticulate, xgboost, SHAPforxgboost |
| Suggests: | knitr, rmarkdown |
| Published: | 2024-11-14 |
| DOI: | 10.32614/CRAN.package.ReSurv |
| Author: | Emil Hofman [aut, cre, cph], Gabriele Pittarello |
| Maintainer: | Emil Hofman <emil_hofman at hotmail.dk> |
| BugReports: | https://github.com/edhofman/ReSurv/issues |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| URL: | https://github.com/edhofman/ReSurv |
| NeedsCompilation: | no |
| SystemRequirements: | Python (>= 3.8.0) |
| Materials: | README |
| CRAN checks: | ReSurv results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=ReSurvto link to this page.