README (original) (raw)

Rlibkdv

The goal of Rlibkdv is to provide a versatile kernel density visualization R package for geospatial analytics.

With our Rlibkdv, you can quickly generate high-resolution kernel density visualizations, supporting advanced analysis tasks such as bandwidth-tuning and spatiotemporal analysis.

Installation

The latest version of Rlibkdv at CRAN is available at: https://CRAN.R-project.org/package=Rlibkdv

You can install the stable version of Rlibkdv from CRAN with:

install.packages("Rlibkdv")

You can install the development version of Rlibkdv from GitHub with:

library(devtools)
devtools::install_github("bojianzhu/Rlibkdv", force=TRUE, dependencies=FALSE, upgrade="never")

Examples

Kernel Density Visualization:

library(Rlibkdv)
data(hk)
resKDV <-kdv(hk$lon, hk$lat, 1000.0, 800, 640)
plotKDV(resKDV)

image-20230804221151903

Spatiotemporal Kernel Density Visualization:

library(Rlibkdv)
data(hk)
resSTKDV <- stkdv(hk$lon,hk$lat,hk$t, 1000.0, 6.0, 800, 640, 32)
plotSTKDV(resSTKDV)

image-20230804221415816

Project Members:

Prof. (Edison) Tsz Nam Chan, Hong Kong Baptist University

Mr. Bojian Zhu, Xidian University (now in Hong Kong Baptist University)

Prof. Dingming Wu, Shenzhen University

Prof. (Ryan) Leong Hou U, University of Macau

Prof. Jianliang Xu, Hong Kong Baptist University

Publications:

  1. Tsz Nam Chan, Rui Zang, Pak Lon Ip, Leong Hou U, Jianliang Xu. PyNKDV: An Efficient Network Kernel Density Visualization Library for Geospatial Analytic Systems. Proceedings of ACM Conference on Management of Data (SIGMOD), 2023.
  2. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, Reynold Cheng. Large-scale Geospatial Analytics: Problems, Challenges, and Opportunities. Proceedings of ACM Conference on Management of Data (SIGMOD), 2023.
  3. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu, Reynold Cheng. Kernel Density Visualization for Big Geospatial Data: Algorithms and Applications. IEEE International Conference on Mobile Data Management (MDM), 2023.
  4. Tsz Nam Chan, Leong Hou U, Byron Choi, Jianliang Xu. SLAM: Efficient Sweep Line Algorithms for Kernel Density Visualization. Proceedings of ACM Conference on Management of Data (SIGMOD), 2022.
  5. Tsz Nam Chan, Pak Lon Ip, Kaiyan Zhao, Leong Hou U, Byron Choi, Jianliang Xu. LIBKDV: A Versatile Kernel Density Visualization Library for Geospatial Analytics. Proceedings of the VLDB Endowment (PVLDB), 2022.
  6. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, Jianliang Xu. SWS: A Complexity-Optimized Solution for Spatial-Temporal Kernel Density Visualization. Proceedings of the VLDB Endowment (PVLDB), 2022.
  7. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Byron Choi, Jianliang Xu. SAFE: A Share-and-Aggregate Bandwidth Exploration Framework for Kernel Density Visualization. Proceedings of the VLDB Endowment (PVLDB), 2022.
  8. Tsz Nam Chan, Zhe Li, Leong Hou U, Jianliang Xu, Reynold Cheng. Fast Augmentation Algorithms for Network Kernel Density Visualization. Proceedings of the VLDB Endowment (PVLDB), 2021.
  9. Tsz Nam Chan, Pak Lon Ip, Leong Hou U, Weng Hou Tong, Shivansh Mittal, Ye Li, Reynold Cheng. KDV-Explorer: A Near Real-Time Kernel Density Visualization System for Spatial Analysis. Proceedings of the VLDB Endowment (PVLDB), 2021.
  10. Tsz Nam Chan, Reynold Cheng, Man Lung Yiu. QUAD: Quadratic-Bound-based Kernel Density Visualization. Proceedings of ACM Conference on Management of Data (SIGMOD), 2020.
  11. Tsz Nam Chan, Leong Hou U, Reynold Cheng, Man Lung Yiu, Shivansh Mittal. Efficient Algorithms for Kernel Aggregation Queries. IEEE Transactions on Knowledge and Data Engineering (TKDE).
  12. Tsz Nam Chan, Man Lung Yiu, Leong Hou U. KARL: Fast Kernel Aggregation Queries. IEEE International Conference on Data Engineering (ICDE), 2019.

Fast Density Analysis - A Powerful QGIS plug-in for Large-scale Geospatial Analytics

PyNKDV - An Efficient Network Kernel Density Visualization Library for Geospatial Analytic Systems

LIBKDV - A Versatile Kernel Density Visualization Library for Geospatial Analytics (Heatmap)