SCGLR: Supervised Component Generalized Linear Regression (original) (raw)

An extension of the Fisher Scoring Algorithm to combine PLS regression with GLM estimation in the multivariate context. Covariates can also be grouped in themes.

Version: 3.1.0
Depends: R (≥ 3.0.0)
Imports: Matrix, Formula, graphics, ggplot2 (≥ 3.0.0), grid, pROC (≥ 1.9), ade4, rlang, pls
Suggests: future, future.apply, progressr
Published: 2025-03-26
DOI: 10.32614/CRAN.package.SCGLR
Author: Guillaume Cornu ORCID iD [aut, cre], Frederic Mortier ORCID iD [aut], Catherine Trottier [aut], Xavier Bry [aut], Jocelyn Chauvet ORCID iD [aut], Sylvie Gourlet-FleuryORCID iD [dtc] (Projet CoForChange https://coforchange.cirad.fr), Claude Garcia ORCID iD [dtc] (Projet CoForTips https://www.cofortips.org), GAMBAS [fnd] (https://gambas.cirad.fr)
Maintainer: Guillaume Cornu
BugReports: https://github.com/SCnext/SCGLR/issues
License: CeCILL-2 | GPL-2
URL: https://scnext.github.io/SCGLR/, https://github.com/scnext/SCGLR,https://cran.r-project.org/package=SCGLR
NeedsCompilation: no
Materials: README NEWS
CRAN checks: SCGLR results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=SCGLRto link to this page.