doi:10.1101/2021.02.01.429207> for more details.">

SignacX: Cell Type Identification and Discovery from Single Cell Gene Expression Data (original) (raw)

An implementation of neural networks trained with flow-sorted gene expression data to classify cellular phenotypes in single cell RNA-sequencing data. See Chamberlain M et al. (2021) <doi:10.1101/2021.02.01.429207> for more details.

Version:

2.2.5

Depends:

R (≥ 3.5.0)

Imports:

neuralnet, lme4, methods, Matrix, pbmcapply, Seurat (≥ 3.2.0), RJSONIO, igraph (≥ 1.2.1), jsonlite (≥ 1.5), RColorBrewer (≥ 1.1.2), stats

Suggests:

hdf5r, rhdf5, knitr, rmarkdown, formatR

Published:

2021-11-18

DOI:

10.32614/CRAN.package.SignacX

Author:

Mathew Chamberlain [aut, cre], Virginia Savova [aut], Richa Hanamsagar [aut], Frank Nestle [aut], Emanuele de Rinaldis [aut], Sanofi US [fnd]

Maintainer:

Mathew Chamberlain

BugReports:

https://github.com/mathewchamberlain/SignacX/issues

License:

GPL-3

URL:

https://github.com/mathewchamberlain/SignacX

NeedsCompilation:

no

Citation:

SignacX citation info

Materials:

README, NEWS

In views:

Omics

CRAN checks:

SignacX results