TensorComplete: Tensor Noise Reduction and Completion Methods (original) (raw)

Efficient algorithms for tensor noise reduction and completion. This package includes a suite of parametric and nonparametric tools for estimating tensor signals from noisy, possibly incomplete observations. The methods allow a broad range of data types, including continuous, binary, and ordinal-valued tensor entries. The algorithms employ the alternating optimization. The detailed algorithm description can be found in the following three references.

Version: 0.2.0
Imports: pracma, methods, utils, tensorregress, MASS
Published: 2023-04-14
DOI: 10.32614/CRAN.package.TensorComplete
Author: Chanwoo Lee, Miaoyan Wang
Maintainer: Chanwoo Lee <chanwoo.lee at wisc.edu>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: Chanwoo Lee and Miaoyan Wang. Tensor denoising and completion based on ordinal observations. ICML, 2020.http://proceedings.mlr.press/v119/lee20i.html Chanwoo Lee and Miaoyan Wang. Beyond the Signs: Nonparametric tensor completion via sign series. NeurIPS, 2021.https://papers.nips.cc/paper/2021/hash/b60c5ab647a27045b462934977ccad9a-Abstract.htmlChanwoo Lee, Lexin Li, Hao Helen Zhang, and Miaoyan Wang. Nonparametric trace regression in high dimensions via sign series representation. 2021. https://arxiv.org/abs/2105.01783
NeedsCompilation: no
Materials: README
CRAN checks: TensorComplete results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=TensorCompleteto link to this page.