README (original) (raw)
amsSim
Adaptive Multilevel Splitting (AMS) simulation tools for rare-event option pricing and path generation in continuous-time models.
Core routines are implemented in C++ (Rcpp/RcppArmadillo) for speed.
Status: under active development; preparing for CRAN submission.
Features
- Fast Monte-Carlo path simulation:
- Black–Scholes (exact)
- Heston variants (Euler / Milstein / QE Andersen 2008)
- Adaptive Multilevel Splitting estimator for rare events
- Clean R interface with vectorised inputs
- Minimal dependencies (Rcpp, RcppArmadillo)
Installation
Install the development version from GitHub:
Option A: via remotes
install.packages(“remotes”) remotes::install_github(“RiccardoGozzo/amsSim”)
devtools::install_github(“RiccardoGozzo/amsSim”)
Option C: via pak (fast)
install.packages(“pak”, repos = “https://r-lib.github.io/p/pak/dev/”)
pak::pak(“RiccardoGozzo/amsSim”)
Quick start
library(amsSim)
Black–Scholes toy run (fast)
set.seed(1) res <- simulate_AMS(1, n = 500, t = 1, p = 252, r = 0.03, sigma = 0.2, S0 = 1, rho = NULL) str(res)
AMS example (small, <5s)
set.seed(1) out <- AMS(model = 2, type = 3, funz = 1, n = 500, t = 1, p = 252, r = 0.03, sigma = 0.2, rho = -0.5, S0 = 1, rim = 0, Lmax = 0.5, strike = 1.3, K = 200) str(out)
Main functions
simulate_AMS(model, n, t, p, r, sigma, S0, rho = NULL, rim = 0L, v0 = 0.04)
Returns simulated paths: model 1 (Black–Scholes): matrix/list with S of size n x (p - rim + 1) Heston models (2–4): list with S, V
AMS(model, type, funz, n, t, p, r, sigma, S0, rho = NULL, rim = 0L, v0 = 0.04, Lmax = 0, strike = 1, K = 1L)
Runs the adaptive splitting loop and returns list(price, std).
System Requirements
- R version >= 4.0
- Rcpp (>= 1.0.0), RcppArmadillo(>= 0.11)
- Compilers:
- macOS: Xcode command line tools (clang++)
- Linux: g++ (>= 9), make, and BLAS/LAPACK libraries
- Windows: Rtools (>= 4.0)
Contributing
Contributions are welcome!
If you wish to contribute, please:
- Fork the repository on GitHub.
- Create a new branch for your feature/bugfix.
- Add clear documentation and, if possible, unit tests.
- Submit a pull request.
License
This package is released under the MIT License.
See the file for details.
Citation
If you use amsSim in your research, please cite it as follows:
Gozzo, R. (2025). Adaptive Multilevel Splitting: First Application to Rare-Event Derivative Pricing Available at: https://arxiv.org/html/2510.23461v1