doi:10.48550/arXiv.2001.00636>.">

bagged.outliertrees: Robust Explainable Outlier Detection Based on OutlierTree (original) (raw)

Bagged OutlierTrees is an explainable unsupervised outlier detection method based on an ensemble implementation of the existing OutlierTree procedure (Cortes, 2020). This implementation takes advantage of bootstrap aggregating (bagging) to improve robustness by reducing the possible masking effect and subsequent high variance (similarly to Isolation Forest), hence the name "Bagged OutlierTrees". To learn more about the base procedure OutlierTree (Cortes, 2020), please refer to <doi:10.48550/arXiv.2001.00636>.

Version: 1.0.0
Depends: R (≥ 3.5.0)
Imports: outliertree, dplyr, doSNOW, parallel, foreach, rlist, data.table
Published: 2021-07-06
DOI: 10.32614/CRAN.package.bagged.outliertrees
Author: Rafael Santos [aut, cre]
Maintainer: Rafael Santos <rafael.jpsantos at outlook.com>
BugReports: https://github.com/RafaJPSantos/bagged.outliertrees/issues
License: MIT + file
URL: https://github.com/RafaJPSantos/bagged.outliertrees
NeedsCompilation: no
Materials: README, NEWS
In views: AnomalyDetection
CRAN checks: bagged.outliertrees results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=bagged.outliertreesto link to this page.