bagged.outliertrees: Robust Explainable Outlier Detection Based on OutlierTree (original) (raw)
Bagged OutlierTrees is an explainable unsupervised outlier detection method based on an ensemble implementation of the existing OutlierTree procedure (Cortes, 2020). This implementation takes advantage of bootstrap aggregating (bagging) to improve robustness by reducing the possible masking effect and subsequent high variance (similarly to Isolation Forest), hence the name "Bagged OutlierTrees". To learn more about the base procedure OutlierTree (Cortes, 2020), please refer to <doi:10.48550/arXiv.2001.00636>.
| Version: | 1.0.0 |
|---|---|
| Depends: | R (≥ 3.5.0) |
| Imports: | outliertree, dplyr, doSNOW, parallel, foreach, rlist, data.table |
| Published: | 2021-07-06 |
| DOI: | 10.32614/CRAN.package.bagged.outliertrees |
| Author: | Rafael Santos [aut, cre] |
| Maintainer: | Rafael Santos <rafael.jpsantos at outlook.com> |
| BugReports: | https://github.com/RafaJPSantos/bagged.outliertrees/issues |
| License: | MIT + file |
| URL: | https://github.com/RafaJPSantos/bagged.outliertrees |
| NeedsCompilation: | no |
| Materials: | README, NEWS |
| In views: | AnomalyDetection |
| CRAN checks: | bagged.outliertrees results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=bagged.outliertreesto link to this page.