doi:10.1080/10618600.2018.1458625>) For large data, Vecchia-approximation for faster computation is leveraged (Sauer, A., Cooper, A., and Gramacy, R., (2023), <doi:10.1080/10618600.2022.2129662>). Incorporates 'OpenMP' and SNOW parallelization and utilizes 'C'/'C++' under the hood.">

bhetGP: Bayesian Heteroskedastic Gaussian Processes (original) (raw)

Performs Bayesian posterior inference for heteroskedastic Gaussian processes. Models are trained through MCMC including elliptical slice sampling (ESS) of latent noise processes and Metropolis-Hastings sampling of kernel hyperparameters. Replicates are handled efficientyly through a Woodbury formulation of the joint likelihood for the mean and noise process (Binois, M., Gramacy, R., Ludkovski, M. (2018) <doi:10.1080/10618600.2018.1458625>) For large data, Vecchia-approximation for faster computation is leveraged (Sauer, A., Cooper, A., and Gramacy, R., (2023), <doi:10.1080/10618600.2022.2129662>). Incorporates 'OpenMP' and SNOW parallelization and utilizes 'C'/'C++' under the hood.

Version: 1.0.1
Imports: grDevices, graphics, stats, doParallel, foreach, parallel, GpGp, GPvecchia, Matrix, Rcpp, mvtnorm, FNN, hetGP, laGP
LinkingTo: Rcpp, RcppArmadillo
Suggests: interp
Published: 2025-07-18
DOI: 10.32614/CRAN.package.bhetGP
Author: Parul V. Patil [aut, cre]
Maintainer: Parul V. Patil
License: LGPL-2 | LGPL-2.1 LGPL-3 [expanded from: LGPL]
NeedsCompilation: yes
Materials: README
CRAN checks: bhetGP results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=bhetGPto link to this page.