doi:10.1093/biomet/82.4.711>.">

bpgmm: Bayesian Model Selection Approach for Parsimonious Gaussian Mixture Models (original) (raw)

Model-based clustering using Bayesian parsimonious Gaussian mixture models. MCMC (Markov chain Monte Carlo) are used for parameter estimation. The RJMCMC (Reversible-jump Markov chain Monte Carlo) is used for model selection. GREEN et al. (1995) <doi:10.1093/biomet/82.4.711>.

Version: 1.1.1
Depends: R (≥ 3.1.0)
Imports: methods (≥ 3.5.1), mcmcse (≥ 1.3-2), pgmm (≥ 1.2.3), mvtnorm (≥ 1.0-10), MASS (≥ 7.3-51.1), Rcpp (≥ 1.0.1), gtools (≥ 3.8.1), label.switching (≥ 1.8), fabMix (≥ 5.0), mclust (≥ 5.4.3)
LinkingTo: Rcpp, RcppArmadillo
Suggests: testthat
Published: 2025-10-30
DOI: 10.32614/CRAN.package.bpgmm
Author: Yaoxiang Li [aut, cre], Xiang Lu [aut], Tanzy Love [aut]
Maintainer: Yaoxiang Li
License: GPL-3
NeedsCompilation: yes
CRAN checks: bpgmm results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=bpgmmto link to this page.