bst: Gradient Boosting (original) (raw)
Functional gradient descent algorithm for a variety of convex and non-convex loss functions, for both classical and robust regression and classification problems. See Wang (2011) <doi:10.2202/1557-4679.1304>, Wang (2012) <doi:10.3414/ME11-02-0020>, Wang (2018) <doi:10.1080/10618600.2018.1424635>, Wang (2018) <doi:10.1214/18-EJS1404>.
| Version: | 0.3-24 |
|---|---|
| Imports: | rpart, methods, foreach, doParallel, gbm |
| Suggests: | hdi, pROC, R.rsp, knitr, gdata |
| Published: | 2023-01-06 |
| DOI: | 10.32614/CRAN.package.bst |
| Author: | Zhu Wang |
| Maintainer: | Zhu Wang |
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
| NeedsCompilation: | no |
| Citation: | bst citation info |
| Materials: | |
| In views: | MachineLearning |
| CRAN checks: | bst results |
Documentation:
Downloads:
Reverse dependencies:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=bstto link to this page.