Help for package campsis (original) (raw)

Type: Package
Title: Generic PK/PD Simulation Platform CAMPSIS
Version: 1.7.0
Description: A generic, easy-to-use and intuitive pharmacokinetic/pharmacodynamic (PK/PD) simulation platform based on R packages 'rxode2' and 'mrgsolve'. CAMPSIS provides an abstraction layer over the underlying processes of writing a PK/PD model, assembling a custom dataset and running a simulation. CAMPSIS has a strong dependency to the R package 'campsismod', which allows to read/write a model from/to files and adapt it further on the fly in the R environment. Package 'campsis' allows the user to assemble a dataset in an intuitive manner. Once the user’s dataset is ready, the package is in charge of preparing the simulation, calling 'rxode2' or 'mrgsolve' (at the user's choice) and returning the results, for the given model, dataset and desired simulation settings.
License: GPL (≥ 3)
URL: https://github.com/Calvagone/campsis,https://calvagone.github.io/,https://calvagone.github.io/campsis.doc/
BugReports: https://github.com/Calvagone/campsis/issues
Depends: campsismod (≥ 1.2.0), R (≥ 4.0.0)
Imports: assertthat, digest, dplyr, furrr, future, ggplot2, MASS, methods, progressr, purrr, rlang, stats, tibble, tidyr
Suggests: bookdown, devtools, gridExtra, knitr, mrgsolve, pkgdown, rmarkdown, roxygen2, rxode2, stringr, testthat, tictoc, vdiffr, xfun
VignetteBuilder: knitr
Encoding: UTF-8
Language: en-US
LazyData: true
RoxygenNote: 7.3.2
Collate: 'global.R' 'utilities.R' 'time_utilities.R' 'check.R' 'generic.R' 'data.R' 'seed.R' 'distribution.R' 'dataset_config.R' 'time_entry.R' 'repeated_schedule.R' 'occasion.R' 'occasions.R' 'treatment_iov.R' 'treatment_iovs.R' 'dose_adaptation.R' 'dose_adaptations.R' 'treatment_entry.R' 'treatment.R' 'observations.R' 'observations_set.R' 'covariate.R' 'covariates.R' 'bootstrap.R' 'protocol.R' 'arm.R' 'arms.R' 'event.R' 'events.R' 'scenario.R' 'scenarios.R' 'simulation_engine.R' 'dataset.R' 'event_logic.R' 'dataset_summary.R' 'outfun.R' 'hardware_settings.R' 'simulation_progress.R' 'solver_settings.R' 'nocb_settings.R' 'declare_settings.R' 'progress_settings.R' 'internal_settings.R' 'simulation_settings.R' 'plan_setup.R' 'simulate_preprocess.R' 'simulate.R' 'results_processing.R' 'default_plot.R'
NeedsCompilation: no
Packaged: 2025-04-04 16:45:17 UTC; nicolas.luyckx
Author: Nicolas Luyckx [aut, cre]
Maintainer: Nicolas Luyckx nicolas.luyckx@calvagone.com
Repository: CRAN
Date/Publication: 2025-04-04 17:10:02 UTC

Create a treatment arm.

Description

Create a treatment arm.

Usage

Arm(id = as.integer(NA), subjects = 1, label = as.character(NA))

Arguments

id unique identifier for this arm (available trough dataset), integer. If NA (default), this identifier is auto-incremented.
subjects number of subjects in arm, integer
label arm label, single character string. If set, this label will be output in the ARM column of CAMPSIS instead of the identifier.

Value

an arm


Binomial distribution.

Description

Binomial distribution.

Usage

BinomialDistribution(trials, prob)

Arguments

trials number of Bernoulli trials per observation (=subject), integer
prob probability of success for each trial

Value

a binomial distribution


Create one or several bolus(es).

Description

Create one or several bolus(es).

Usage

Bolus(
  time,
  amount,
  compartment = NULL,
  f = NULL,
  lag = NULL,
  ii = NULL,
  addl = NULL,
  wrap = TRUE,
  ref = NULL,
  rep = NULL
)

Arguments

time treatment time(s), numeric value or vector. First treatment time if used together with ii and addl.
amount amount to give as bolus, single numeric value
compartment compartment index or name to give the bolus(es). A vector of integers or names can be used for a complex model administration.
f fraction of dose amount, list of distributions (one per compartment)
lag dose lag time, list of distributions (one per compartment)
ii inter-dose interval, requires argument 'time' to be a single numeric value
addl number of additional doses, requires argument 'time' to be a single integer value
wrap if TRUE, the bolus wrapper will be stored as is in the dataset, otherwise, it will be split into a list of boluses distinct in time. Default is TRUE.
ref any reference name used to identify this bolus, single character value
rep repeat the base dosing schedule several times, a 'repeated schedule' object is expected. Default is NULL (no repetition).

Value

a single bolus or a list of boluses


Create a bootstrap object.

Description

Create a bootstrap object.

Usage

Bootstrap(
  data,
  id = "BS_ID",
  replacement = FALSE,
  random = FALSE,
  export_id = FALSE
)

Arguments

data data frame to be bootstrapped. It must have a unique identifier column named according to the specified argument 'id' (default value is 'BS_ID'). Other columns are covariates to bootstrap. They must all be numeric. Whatever the configuration of the bootstrap, these covariates are always read row by row and belong to a same individual.
id unique identifier column name in data
replacement values can be reused or not when drawn, logical
random values are drawn randomly, logical
export_id tell CAMPSIS if the identifier 'BS_ID' must be output or not, logical

Value

a bootstrap object


Create a bootstrap distribution. During function sampling, CAMPSIS will generate values depending on the given data and arguments.

Description

Create a bootstrap distribution. During function sampling, CAMPSIS will generate values depending on the given data and arguments.

Usage

BootstrapDistribution(data, replacement = FALSE, random = FALSE)

Arguments

data values to draw, numeric vector
replacement values can be reused or not, logical
random values are drawn randomly, logical

Value

a bootstrap distribution


Create a constant distribution. Its value will be constant across all generated samples.

Description

Create a constant distribution. Its value will be constant across all generated samples.

Usage

ConstantDistribution(value)

Arguments

value covariate value, single numeric value

Value

a constant distribution (same value for all samples)


Create a non time-varying (fixed) covariate.

Description

Create a non time-varying (fixed) covariate.

Usage

Covariate(name, distribution)

Arguments

name covariate name, single character value
distribution covariate distribution

Value

a fixed covariate


Cyclic schedule constructor.

Description

Cyclic schedule constructor.

Usage

CyclicSchedule(duration, repetitions)

Arguments

duration duration of the cycle, numeric value
repetitions number of additional repetitions to the base pattern, integer value

Value

a cyclic schedule


Create a dataset.

Description

Create a dataset.

Usage

Dataset(subjects = NULL, label = as.character(NA))

Arguments

subjects number of subjects in the default arm
label label of the default arm, NA by default

Value

a dataset


Create a dataset configuration. This configuration allows CAMPSIS to know which are the default depot and observed compartments.

Description

Create a dataset configuration. This configuration allows CAMPSIS to know which are the default depot and observed compartments.

Usage

DatasetConfig(
  defDepotCmt = 1,
  defObsCmt = 1,
  exportTSLD = FALSE,
  exportTDOS = FALSE,
  timeUnitDataset = "hour",
  timeUnitExport = "hour"
)

Arguments

defDepotCmt default depot compartment, integer
defObsCmt default observation compartment, integer
exportTSLD export column TSLD (time since last dose), logical
exportTDOS export column TDOS (time of last dose), logical
timeUnitDataset unit of time in dataset, character ('hour' by default)
timeUnitExport unit of time in export, character ('hour' by default)

Value

a dataset configuration


Create a dataset summary (internal method).

Description

Create a dataset summary (internal method).

Usage

DatasetSummary()

Value

a dataset summary


Create declare settings.

Description

Create declare settings.

Usage

Declare(variables = character(0))

Arguments

variables uninitialized variables to be declared, only needed with mrgsolve

Value

Declare settings


Discrete distribution.

Description

Discrete distribution.

Usage

DiscreteDistribution(x, prob, replace = TRUE)

Arguments

x vector of one or more integers from which to choose
prob a vector of probability weights for obtaining the elements of the vector being sampled
replace should sampling be with replacement, default is TRUE

Value

a discrete distribution


Create a dose adaptation.

Description

Create a dose adaptation.

Usage

DoseAdaptation(formula, compartments = NULL)

Arguments

formula formula to apply, single character string, e.g. "AMT*WT"
compartments compartment indexes or names where the formula needs to be applied, integer or character vector. Default is NULL (formula applied on all compartments)

Value

a fixed covariate


Create an ETA distribution. The resulting distribution is a normal distribution, with mean=0 and sd=sqrt(OMEGA).

Description

Create an ETA distribution. The resulting distribution is a normal distribution, with mean=0 and sd=sqrt(OMEGA).

Usage

EtaDistribution(model, omega)

Arguments

model model
omega corresponding THETA name, character

Value

an ETA distribution


Create an interruption event.

Description

Create an interruption event.

Usage

Event(name = NULL, times, fun, debug = FALSE)

Arguments

name event name, character value
times interruption times, numeric vector
fun event function to apply at each interruption
debug output the variables that were changed through this event

Value

an event definition


Create an event covariate. These covariates can be modified further in interruption events.

Description

Create an event covariate. These covariates can be modified further in interruption events.

Usage

EventCovariate(name, distribution)

Arguments

name covariate name, character
distribution covariate distribution at time 0

Value

a time-varying covariate


Create an event iteration object.

Description

Create an event iteration object.

Usage

EventIteration(index, start, end, inits = data.frame(), maxIndex)

Arguments

index iteration index, starts at 1
start iteration start time
end iteration end time
inits initial values for all subjects, data frame
maxIndex the last iteration index

Value

an event iteration object


Description

Create an event-related observations list. Please note that the provided 'times' will automatically be sorted. Duplicated times will be removed.

Usage

EventRelatedObservations(times, compartment = NA)

Arguments

times observation times, numeric vector
compartment compartment index, integer

Value

observations


Create a list of interruption events.

Description

Create a list of interruption events.

Usage

Events()

Value

a events object


Create a fixed distribution. Each sample will be assigned a fixed value coming from vector 'values'.

Description

Create a fixed distribution. Each sample will be assigned a fixed value coming from vector 'values'.

Usage

FixedDistribution(values)

Arguments

values covariate values, numeric vector (1 value per sample)

Value

a fixed distribution (1 value per sample)


Create a function distribution. During distribution sampling, the provided function will be responsible for generating values for each sample. If first argument of this function is not the size (n), please tell which argument corresponds to the size 'n' (e.g. list(size="n")).

Description

Create a function distribution. During distribution sampling, the provided function will be responsible for generating values for each sample. If first argument of this function is not the size (n), please tell which argument corresponds to the size 'n' (e.g. list(size="n")).

Usage

FunctionDistribution(fun, args)

Arguments

fun function name, character (e.g. 'rnorm')
args list of arguments (e.g list(mean=70, sd=10))

Value

a function distribution


Create hardware settings.

Description

Create hardware settings.

Usage

Hardware(
  cpu = 1,
  replicate_parallel = FALSE,
  scenario_parallel = FALSE,
  slice_parallel = FALSE,
  slice_size = NULL,
  dataset_parallel = FALSE,
  dataset_slice_size = 500,
  auto_setup_plan = NULL
)

Arguments

cpu number of CPU cores to use, default is 1
replicate_parallel enable parallel computing for replicates, default is FALSE
scenario_parallel enable parallel computing for scenarios, default is FALSE
slice_parallel enable parallel computing for slices, default is FALSE
slice_size number of subjects per simulated slice, default is NULL (auto-configured by Campsis depending on the specified engine)
dataset_parallel enable parallelisation when exporting dataset into a table, default is FALSE
dataset_slice_size dataset slice size when exporting subjects to a table, default is 500. Only applicable if 'dataset_parallel' is enabled.
auto_setup_plan auto-setup plan with the library future, if not set (i.e. =NULL), plan will be setup automatically if the number of CPU's > 1.

Value

hardware settings


Define inter-occasion variability (IOV) into the dataset. A new variable of name 'colname' will be output into the dataset and will vary at each dose number according to the given distribution.

Description

Define inter-occasion variability (IOV) into the dataset. A new variable of name 'colname' will be output into the dataset and will vary at each dose number according to the given distribution.

Usage

IOV(colname, distribution, doseNumbers = NULL)

Arguments

colname name of the column that will be output in dataset
distribution distribution
doseNumbers dose numbers, if provided, IOV is generated at these doses only. By default, IOV is generated for all doses.

Value

an IOV object


Create one or several infusion(s).

Description

Create one or several infusion(s).

Usage

Infusion(
  time,
  amount,
  compartment = NULL,
  f = NULL,
  lag = NULL,
  duration = NULL,
  rate = NULL,
  ii = NULL,
  addl = NULL,
  wrap = TRUE,
  ref = NULL,
  rep = NULL
)

Arguments

time treatment time(s), numeric value or vector. First treatment time if used together with ii and addl.
amount amount to infuse, single numeric value
compartment compartment index or name to give the infusion(s). A vector of integers or names can be used for a complex model administration.
f fraction of infusion amount, list of distributions (one per compartment)
lag infusion lag time, , list of distributions (one per compartment)
duration infusion duration, list of distributions (one per compartment)
rate infusion rate, list of distributions (one per compartment)
ii inter-dose interval, requires argument 'time' to be a single numeric value
addl number of additional doses, requires argument 'time' to be a single integer value
wrap if TRUE, the infusion wrapper will be stored as is in the dataset, otherwise, it will be split into a list of infusions distinct in time. Default is TRUE.
ref any reference name used to identify this infusion, single character value
rep repeat the base dosing schedule several times, a 'repeated schedule' object is expected. Default is NULL (no repetition).

Value

a single infusion or a list of infusions.


Create a log normal distribution.

Description

Create a log normal distribution.

Usage

LogNormalDistribution(meanlog, sdlog)

Arguments

meanlog mean value of distribution in log domain
sdlog standard deviation of distribution in log domain

Value

a log normal distribution


Create NOCB settings.

Description

Create NOCB settings.

Usage

NOCB(enable = NULL, variables = character(0))

Arguments

enable enable/disable next-observation carried backward mode (NOCB), default value is TRUE for mrgsolve, FALSE for RxODE
variables variable names subject to NOCB behavior (see vignette for more info)

Value

NOCB settings


Create a normal distribution.

Description

Create a normal distribution.

Usage

NormalDistribution(mean, sd)

Arguments

mean mean value of distribution
sd standard deviation of distribution

Value

a normal distribution


Create an observations list. Please note that the provided 'times' will automatically be sorted. Duplicated times will be removed.

Description

Create an observations list. Please note that the provided 'times' will automatically be sorted. Duplicated times will be removed.

Usage

Observations(times, compartment = NA)

Arguments

times observation times, numeric vector
compartment compartment index (integer) or name (character)

Value

an observations list


Define a new occasion. Occasions are defined by mapping occasion values to dose numbers. A new column will automatically be created in the exported dataset.

Description

Define a new occasion. Occasions are defined by mapping occasion values to dose numbers. A new column will automatically be created in the exported dataset.

Usage

Occasion(colname, values, doseNumbers)

Arguments

colname name of the column that will be output in dataset
values the occasion numbers, any integer vector
doseNumbers the related dose numbers, any integer vector of same length as 'values'

Value

occasion object


Create a new output function

Description

Create a new output function

Usage

Outfun(
  fun = function(x, ...) {
     x
 },
  args = list(),
  packages = NULL,
  level = "scenario"
)

Arguments

fun function or purrr-style lambda formula, first argument 'x' must be the results
args extra arguments, named list
packages packages that must be loaded to execute the given function, character vector
level either 'scenario' or 'replicate'. Default is 'scenario'.

Value

an output function


Compute the prediction interval summary over time.

Description

Compute the prediction interval summary over time.

Usage

PI(x, output, scenarios = NULL, level = 0.9, gather = TRUE)

Arguments

x data frame
output variable to show, character value
scenarios scenarios, character vector, NULL is default
level PI level, default is 0.9 (90% PI)
gather FALSE: med, low & up columns, TRUE: metric column

Value

a summary table


Create a parameter distribution. The resulting distribution is a log-normal distribution, with meanlog=log(THETA) and sdlog=sqrt(OMEGA).

Description

Create a parameter distribution. The resulting distribution is a log-normal distribution, with meanlog=log(THETA) and sdlog=sqrt(OMEGA).

Usage

ParameterDistribution(model, theta, omega = NULL)

Arguments

model model
theta corresponding THETA name, character
omega corresponding OMEGA name, character, NULL if not defined

Value

a parameter distribution


Create progress settings.

Description

Create progress settings.

Usage

Progress(tick_slice = TRUE)

Arguments

tick_slice tick() is called after each simulated slice, default is TRUE. In some cases, when the number of subjects per slice is low, it may be useful disable this flag, to improve performance issues.

Value

progress settings


'Repeat at' schedule constructor. Note that the time 0 for the base pattern will be added by default if not provided.

Description

'Repeat at' schedule constructor. Note that the time 0 for the base pattern will be added by default if not provided.

Usage

RepeatAtSchedule(times)

Arguments

times times at which the original schedule must be repeated, numeric vector

Value

a 'repeat-at' schedule


Create an scenario.

Description

Create an scenario.

Usage

Scenario(name = NULL, model = NULL, dataset = NULL)

Arguments

name scenario name, single character string
model either a CAMPSIS model, a function or lambda-style formula
dataset either a CAMPSIS dataset, a function or lambda-style formula

Value

a new scenario


Create a list of scenarios.

Description

Create a list of scenarios.

Usage

Scenarios()

Value

a scenarios object


Create advanced simulation settings.

Description

Create advanced simulation settings.

Usage

Settings(...)

Arguments

... any user-required settings: see ?Hardware, ?Solver, ?NOCB, ?Declare, ?Progress or ?AutoReplicationSettings

Value

advanced simulation settings


Create a simulation progress object.

Description

Create a simulation progress object.

Usage

SimulationProgress(
  replicates = 1,
  scenarios = 1,
  progressor = NULL,
  hardware = NULL
)

Arguments

replicates total number of replicates to simulate
scenarios total number of scenarios to simulate
progressor progressr progressor
hardware hardware settings

Value

a progress bar


Create solver settings.

Description

Create solver settings.

Usage

Solver(
  atol = 1e-08,
  rtol = 1e-08,
  hmax = NA,
  maxsteps = 70000L,
  method = "liblsoda"
)

Arguments

atol absolute solver tolerance, default is 1e-08
rtol relative solver tolerance, default is 1e-08
hmax limit how big a solver step can be, default is NA
maxsteps max steps between 2 integration times (e.g. when observations records are far apart), default is 70000
method solver method, for RxODE/rxode2 only: 'liblsoda' (default), 'lsoda', 'dop853', 'indLin'. Mrgsolve's method is always 'lsoda'.

Value

solver settings


Create a time-varying covariate. This covariate will be implemented using EVID=2 rows in the exported dataset and will not use interruption events.

Description

Create a time-varying covariate. This covariate will be implemented using EVID=2 rows in the exported dataset and will not use interruption events.

Usage

TimeVaryingCovariate(name, table)

Arguments

name covariate name, character
table data.frame, must contain the mandatory columns 'TIME' and 'VALUE'. An 'ID' column may also be specified. In that case, ID's between 1 and the max number of subjects in the dataset/arm can be used. All ID's must have a VALUE defined for TIME 0.

Value

a time-varying covariate


Create an uniform distribution.

Description

Create an uniform distribution.

Usage

UniformDistribution(min, max)

Arguments

min min value
max max value

Value

an uniform distribution


Compute the VPC summary. Input data frame must contain the following columns: - replicate: replicate number - low: low percentile value in replicate (and in scenario if present) - med: median value in replicate (and in scenario if present) - up: up percentile value in replicate (and in scenario if present) - any scenario column

Description

Compute the VPC summary. Input data frame must contain the following columns: - replicate: replicate number - low: low percentile value in replicate (and in scenario if present) - med: median value in replicate (and in scenario if present) - up: up percentile value in replicate (and in scenario if present) - any scenario column

Usage

VPC(x, scenarios = NULL, level = 0.9)

Arguments

x data frame
scenarios scenarios, character vector, NULL is default
level PI level, default is 0.9 (90% PI)

Value

VPC summary with columns TIME, and all combinations of low, med, up (i.e. low_low, low_med, low_up, etc.)


Apply compartment characteristics from model. In practice, only compartment infusion duration needs to be applied.

Description

Apply compartment characteristics from model. In practice, only compartment infusion duration needs to be applied.

Usage

applyCompartmentCharacteristics(table, properties)

Arguments

table current dataset
properties compartment properties from model

Value

updated dataset


Apply scenario to the given model or dataset.

Description

Apply scenario to the given model or dataset.

Usage

applyScenario(x, scenario)

Arguments

x the given model or dataset
scenario the scenario to be applied

Value

an updated model or dataset


Arm class.

Description

Arm class.

Slots

id

arm unique ID, integer

subjects

number of subjects in arm, integer

label

arm label, single character string

protocol

protocol

covariates

covariates

bootstrap

covariates to be bootstrapped


Arms class.

Description

Arms class.


Assign dose number to each treatment entry.

Description

Assign dose number to each treatment entry.

Usage

assignDoseNumber(object)

Arguments

Value

updated treatment object


Bolus class.

Description

Bolus class.


Bolus wrapper class.

Description

Bolus wrapper class.


Bootstrap class.

Description

Bootstrap class.

Slots

data

data frame to be bootstrapped. Column 'BS_ID' is mandatory and corresponds to the original row ID from the bootstrap. It must be numeric and unique. Other columns are covariates to be bootstrapped (row by row).

replacement

values can be reused or not, logical

random

values are drawn randomly, logical

export_id

tell CAMPSIS if 'BS_ID' must be exported into the dataset, logical


Bootstrap distribution class.

Description

Bootstrap distribution class.

Slots

data

values to draw, numeric vector

replacement

values can be reused or not, logical

random

values are drawn randomly, logical


Suggested Campsis handler for showing the progress bar.

Description

Suggested Campsis handler for showing the progress bar.

Usage

campsis_handler()

Value

a progressr handler list


Check ii and addl arguments in addition to time.

Description

Check ii and addl arguments in addition to time.

Usage

checkIIandADDL(time, ii, addl)

Arguments

time treatment time(s)
ii interdose interval
addl number of additional doses

Value

no return value


Compute incremental progress.

Description

Compute incremental progress.

Usage

computeIncrementalProgress(object, tick_slice)

Arguments

object simulation progress object
tick_slice tick progress on slices

Value

incremental progress, in percentage


Constant distribution class.

Description

Constant distribution class.

Slots

value

covariate value, single numeric value


Convert numeric time vector based on the provided units.

Description

Convert numeric time vector based on the provided units.

Usage

convertTime(x, from, to)

Arguments

x numeric time vector
from unit of x, single character value
to destination unit, single character value

Value

numeric vector with the converted times


Description

Counter-balance LOCF mode for occasions & IOV. This function will simply shift all the related occasion & IOV columns to the left (by one).

Usage

counterBalanceLocfMode(table, columnNames)

Arguments

table current table
columnNames columns to be counter-balanced

Value

2-dimensional dataset


Description

Counter-balance NOCB mode for occasions & IOV. This function will simply shift all the related occasion & IOV columns to the right (by one).

Usage

counterBalanceNocbMode(table, columnNames)

Arguments

table current table
columnNames columns to be counter-balanced

Value

2-dimensional dataset


Covariate class.

Description

Covariate class.

Slots

name

covariate name, single character value

distribution

covariate distribution


Covariates class.

Description

Covariates class.


Cut table according to given iteration.

Description

Cut table according to given iteration.

Usage

cutTableForEvent(table, iteration, summary)

Arguments

table whole table, data frame
iteration current iteration being processed
summary dataset summary

Value

a data frame


Cyclic schedule class.

Description

Cyclic schedule class.

Slots

duration

duration of the cycle, numeric value

repetitions

number of additional repetitions to the base pattern, integer value


Dataset class.

Description

Dataset class.

Slots

arms

a list of treatment arms

config

dataset configuration for export

iiv

data frame containing the inter-individual variability (all ETAS) for the export


Dataset configuration class.

Description

Dataset configuration class.

Slots

def_depot_cmt

default depot compartment, integer

def_obs_cmt

default observation compartment, integer

export_tsld

export column TSLD, logical

export_tdos

export column TDOS, logical

time_unit_dataset

unit of time in dataset, character ('hour' by default)

time_unit_export

unit of time in export, character ('hour' by default)


Convert days to hours.

Description

Convert days to hours.

Usage

days(x)

Arguments

Value

numeric vector in hours


Declare settings class.

Description

Declare settings class.

Slots

variables

uninitialized variables to be declared, only needed with mrgsolve


Distribution class. See this class as an interface.

Description

Distribution class. See this class as an interface.


Dose adaptation class.

Description

Dose adaptation class.

Slots

formula

formula to apply, single character string, e.g. "AMT*WT"

compartments

compartment numbers where the formula needs to be applied


Dose adaptations class.

Description

Dose adaptations class.


Filter CAMPSIS output on dosing rows.

Description

Filter CAMPSIS output on dosing rows.

Usage

dosingOnly(x)

Arguments

x data frame, CAMPSIS output

Value

a data frame with the dosing rows


Return the 'DROP_OTHERS' string that may be used in the 'outvars' vector for RxODE/mrgsolve to drop all others variables that are usually output in the resulting data frame.

Description

Return the 'DROP_OTHERS' string that may be used in the 'outvars' vector for RxODE/mrgsolve to drop all others variables that are usually output in the resulting data frame.

Usage

dropOthers()

Value

a character value


Event class.

Description

Event class.

Slots

name

event name, character value

times

interruption times, numeric vector

fun

event function to apply at each interruption

debug

output the variables that were changed through this event


Event covariate class.

Description

Event covariate class.


Events class.

Description

Events class.


Export delegate method. This method is common to RxODE and mrgsolve.

Description

Export delegate method. This method is common to RxODE and mrgsolve.

Usage

exportDelegate(object, dest, model, arm_offset = NULL, offset_within_arm = 0)

Arguments

object current dataset
dest destination engine
model Campsis model, if provided, ETA's will be added to the dataset
arm_offset arm offset (on ID's) to apply when parallelisation is used. Default value is NULL, meaning parallelisation is disabled. Otherwise, it corresponds to the offset to apply for the current arm being exported (in parallel).
offset_within_arm offset (on ID's) to apply within the current arm being exported (only used when parallelisation is enabled), default is 0

Value

2-dimensional dataset, same for RxODE and mrgsolve


Export table delegate.

Description

Export table delegate.

Usage

exportTableDelegate(model, dataset, dest, events, seed, tablefun, settings)

Arguments

model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
seed seed value
tablefun function or lambda formula to apply on exported 2-dimensional dataset
settings advanced simulation settings

Value

a data frame


Factor scenarios columns if not done yet.

Description

Factor scenarios columns if not done yet.

Usage

factorScenarios(x, scenarios = NULL)

Arguments

x data frame
scenarios scenarios

Fill IOV/Occasion columns.

Description

Problem in RxODE (LOCF mode) / mrgsolve (LOCF mode), if 2 rows have the same time (often: OBS then DOSE), first row covariate value is taken! Workaround: identify these rows (group by ID and TIME) and apply a fill in the UP direction.

Usage

fillIOVOccColumns(table, columnNames, downDirectionFirst)

Arguments

table current table
columnNames the column names to fill
downDirectionFirst TRUE: first fill down then fill up (by ID & TIME). FALSE: First fill up (by ID & TIME), then fill down

Value

2-dimensional dataset


Fixed covariate class.

Description

Fixed covariate class.


Fixed distribution class.

Description

Fixed distribution class.

Slots

values

covariate values, numeric vector (1 value per sample)


Function distribution class.

Description

Function distribution class.

Slots

fun

function name, character (e.g. 'rnorm')

args

list of arguments (e.g list(mean=70, sd=10))


Generate IIV matrix for the given Campsis model.

Description

Generate IIV matrix for the given Campsis model.

Usage

generateIIV(model, n, offset = 0)

Arguments

model Campsis model
n number of subjects
offset if specified, resulting ID will be ID + offset

Value

IIV data frame with ID column


Generate IIV matrix for the given OMEGA matrix.

Description

Generate IIV matrix for the given OMEGA matrix.

Usage

generateIIV_(omega, n)

Arguments

omega omega matrix
n number of subjects

Value

IIV data frame


Return the list of available time units.

Description

Return the list of available time units.

Usage

getAvailableTimeUnits()

Value

character vector


Get data of given column unless if does not exist (return NULL in that case).

Description

Get data of given column unless if does not exist (return NULL in that case).

Usage

getColumn(.data, colname)

Arguments

.data data frame
colname column name

Value

a vector


Get a mapping table with all possibilities of compartment names and their indexes knowing that compartment names can be provided as character or as integer.

Description

Get a mapping table with all possibilities of compartment names and their indexes knowing that compartment names can be provided as character or as integer.

Usage

getCompartmentMapping(compartments)

Arguments

compartments list of compartments

Value

a tibble with two columns: INDEX and NAME


Get all covariates (fixed / time-varying / event covariates).

Description

Get all covariates (fixed / time-varying / event covariates).

Usage

getCovariates(object)

## S4 method for signature 'covariates'
getCovariates(object)

## S4 method for signature 'arm'
getCovariates(object)

## S4 method for signature 'arms'
getCovariates(object)

## S4 method for signature 'dataset'
getCovariates(object)

Arguments

Value

all covariates from object


Get dataset max time.

Description

Get dataset max time.

Usage

getDatasetMaxTime(dataset)

Arguments

Value

max time of dataset, whatever its form, 2-dimensional or structured


Description

Get all event-related covariates.

Usage

getEventCovariates(object)

## S4 method for signature 'covariates'
getEventCovariates(object)

## S4 method for signature 'arm'
getEventCovariates(object)

## S4 method for signature 'arms'
getEventCovariates(object)

## S4 method for signature 'dataset'
getEventCovariates(object)

Arguments

Value

all event-related covariates from object


Get list of event iterations.

Description

Get list of event iterations.

Usage

getEventIterations(events, maxTime)

Arguments

events events
maxTime simulation max time

Value

a list of event iterations


Get all fixed covariates.

Description

Get all fixed covariates.

Usage

getFixedCovariates(object)

## S4 method for signature 'covariates'
getFixedCovariates(object)

## S4 method for signature 'arm'
getFixedCovariates(object)

## S4 method for signature 'arms'
getFixedCovariates(object)

## S4 method for signature 'dataset'
getFixedCovariates(object)

Arguments

Value

all fixed covariates from object


Get scheduling mode for furrr (see argument 'scheduling' available in furrr options).

Description

Get scheduling mode for furrr (see argument 'scheduling' available in furrr options).

Usage

getFurrrScheduling(parallel)

Arguments

parallel use parallel computing with furrr, logical value

Value

1 for parallel computing, 0 otherwise


Get all IOV objects.

Description

Get all IOV objects.

Usage

getIOVs(object)

## S4 method for signature 'arm'
getIOVs(object)

## S4 method for signature 'arms'
getIOVs(object)

## S4 method for signature 'dataset'
getIOVs(object)

Arguments

Value

all IOV's from object


Get initial conditions at simulation start-up.

Description

Get initial conditions at simulation start-up.

Usage

getInitialConditions(subdataset, iteration, cmtNames)

Arguments

subdataset subset of the dataset to simulate
iteration current iteration
cmtNames compartment names

Value

named numeric vector with the new initial conditions


Get all occasions.

Description

Get all occasions.

Usage

getOccasions(object)

## S4 method for signature 'arm'
getOccasions(object)

## S4 method for signature 'arms'
getOccasions(object)

## S4 method for signature 'dataset'
getOccasions(object)

Arguments

Value

all occasions from object


Get random seed value.

Description

Get random seed value.

Usage

getRandomSeedValue()

Value

random seed value generated based on time


Get seed value.

Description

Get seed value.

Usage

getSeed(seed = NULL)

Arguments

seed user-input seed, NULL it not specified

Value

a seed value, integer


Get seed for dataset export.

Description

Get seed for dataset export.

Usage

getSeedForDatasetExport(seed, progress)

Arguments

seed original seed
progress simulation progress

Value

the seed value used to export the dataset


Get seed for iteration.

Description

Get seed for iteration.

Usage

getSeedForIteration(seed, progress)

Arguments

seed original seed
progress simulation progress

Value

the seed value to be used for the given replicate number and iteration


Description

Get seed for parameter uncertainty sampling.

Usage

getSeedForParametersSampling(seed)

Arguments

Value

the seed value used to sample parameter uncertainty


Get simulation engine type.

Description

Get simulation engine type.

Usage

getSimulationEngineType(dest)

Arguments

dest destination engine, string form

Value

simulation engine type


Get splitting configuration for parallel export.

Description

Get splitting configuration for parallel export.

Usage

getSplittingConfiguration(dataset, hardware)

Arguments

dataset Campsis dataset to export
hardware hardware configuration

Value

splitting configuration list (if 'parallel_dataset' is enabled) or NA (if 'parallel_dataset' disabled or if the length of the dataset is less than the dataset export slice size)


Get all time-varying covariates.

Description

Get all time-varying covariates.

Usage

getTimeVaryingCovariates(object)

## S4 method for signature 'covariates'
getTimeVaryingCovariates(object)

## S4 method for signature 'arm'
getTimeVaryingCovariates(object)

## S4 method for signature 'arms'
getTimeVaryingCovariates(object)

## S4 method for signature 'dataset'
getTimeVaryingCovariates(object)

Arguments

Value

all time-varying covariates from object


Get all time-varying variables. These variables are likely to be influenced by the NOCB mode chosen and by the 'nocbvars' vector.

Description

Get all time-varying variables. These variables are likely to be influenced by the NOCB mode chosen and by the 'nocbvars' vector.

Usage

getTimeVaryingVariables(object)

Arguments

Value

character vector with all time-varying variables of the dataset


Get all distinct times for the specified object.

Description

Get all distinct times for the specified object.

Usage

getTimes(object)

## S4 method for signature 'observations_set'
getTimes(object)

## S4 method for signature 'arm'
getTimes(object)

## S4 method for signature 'arms'
getTimes(object)

## S4 method for signature 'events'
getTimes(object)

## S4 method for signature 'dataset'
getTimes(object)

Arguments

Value

numeric vector with all unique times, sorted


Hardware settings class.

Description

Hardware settings class.

Slots

cpu

number of CPU cores to use, default is 1

replicate_parallel

enable parallel computing for replicates, default is FALSE

scenario_parallel

enable parallel computing for scenarios, default is FALSE

slice_parallel

enable parallel computing for slices, default is FALSE

slice_size

number of subjects per simulated slice, default is NULL (auto-configured by Campsis depending on the specified engine)

dataset_parallel

enable parallelisation when exporting dataset into a table, default is FALSE

dataset_slice_size

dataset slice size when exporting subjects to a table, default is 500. Only applicable if 'dataset_parallel' is enabled.

auto_setup_plan

auto-setup plan with the library future, default is FALSE


Convert hours to hours (do nothing).

Description

Convert hours to hours (do nothing).

Usage

hours(x)

Arguments

x numeric vector in hours

Value

numeric vector in hours


Import the whole campsismod package into NAMESPACE when parsed by 'roxygen'.

Description

Import the whole campsismod package into NAMESPACE when parsed by 'roxygen'.

Usage

importCampsismodToNamespace()

Value

always TRUE


Infusion class.

Description

Infusion class.

Slots

duration

infusion duration, distribution list

rate

infusion rate, distribution list


Infusion wrapper class.

Description

Infusion wrapper class.


Internal settings class (transient object from the simulation settings).

Description

Internal settings class (transient object from the simulation settings).

Slots

dataset_summary

dataset summary

progress

simulation progress

iterations

list of event iterations


Is the given bootstrap empty.

Description

Is the given bootstrap empty.

Usage

isEmptyBootstrap(object)

Arguments

Value

logical value TRUE/FALSE


Left-join IIV matrix.

Description

Left-join IIV matrix.

Usage

leftJoinIIV(table, iiv)

Arguments

table dataset, tabular form
iiv IIV matrix

Value

updated table with IIV matrix


Return the number of subjects contained in this arm.

Description

Return the number of subjects contained in this arm.

Usage

## S4 method for signature 'arm'
length(x)

Arguments

Value

a number


Return the number of repetition cycles.

Description

Return the number of repetition cycles.

Usage

## S4 method for signature 'cyclic_schedule'
length(x)

Arguments

Value

a number


Return the number of subjects contained in this dataset.

Description

Return the number of subjects contained in this dataset.

Usage

## S4 method for signature 'dataset'
length(x)

Arguments

Value

a number


Return the number of repetition cycles.

Description

Return the number of repetition cycles.

Usage

## S4 method for signature 'repeat_at_schedule'
length(x)

Arguments

Value

a number


Merge time-varying covariates into a single data frame. This last data frame will be merged afterwards with all treatment and observation rows.

Description

Merge time-varying covariates into a single data frame. This last data frame will be merged afterwards with all treatment and observation rows.

Usage

mergeTimeVaryingCovariates(covariates, ids_within_arm, arm_offset)

Arguments

covariates covariates, only time-varying covariates will be extracted
ids_within_arm ids within the current arm being sampled
arm_offset arm offset (in term of ID's)

Value

a data.frame


Convert minutes to hours.

Description

Convert minutes to hours.

Usage

minutes(x)

Arguments

x numeric vector in minutes

Value

numeric vector in hours


Convert pharma months (1 month = 4 weeks) to hours.

Description

Convert pharma months (1 month = 4 weeks) to hours.

Usage

months(x)

Arguments

x numeric vector in months

Value

numeric vector in hours


mrgsolve engine class.

Description

mrgsolve engine class.


NHANES database (demographics and body measure data combined, from 2017-2018).

Description

NHANES database (demographics and body measure data combined, from 2017-2018).

Usage

nhanes

Format

data frame

BS_ID

Original identifier

SEX

Sex: 1 for males, 2 for females

AGE

Age in years

BW

Body weight in kg

BMI

Body mass index

HT

Height in cm

Source

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/DEMO_J.XPT

https://wwwn.cdc.gov/Nchs/Nhanes/2017-2018/BMX_J.XPT


NOCB settings class.

Description

NOCB settings class.

Slots

enable

enable/disable next-observation carried backward mode (NOCB), default value is TRUE for mrgsolve, FALSE for RxODE

variables

variable names subject to NOCB behavior (see vignette for more info)


Filter CAMPSIS output on observation rows.

Description

Filter CAMPSIS output on observation rows.

Usage

obsOnly(x)

Arguments

x data frame, CAMPSIS output

Value

a data frame with the observation rows


Observations class.

Description

Observations class.

Slots

times

observation times, numeric vector

compartment

compartment index (integer) or name (character)

dv

observed values, numeric vector (FOR EXTERNAL USE)


Observations set class.

Description

Observations set class.


Occasion class.

Description

Occasion class.

Slots

colname

single character value representing the column name related to this occasion

values

occasion values, integer vector, same length as dose_numbers

dose_numbers

associated dose numbers, integer vector, same length as values


Occasions class.

Description

Occasions class.


Check if the current session is on CI (e.g. GitHub actions).

Description

Check if the current session is on CI (e.g. GitHub actions).

Usage

onCI()

Value

logical value TRUE/FALSE


Check if the current session is on CRAN. The objective is to potentially suppress long tasks to be run on CRAN (long tests or vignettes).

Description

Check if the current session is on CRAN. The objective is to potentially suppress long tasks to be run on CRAN (long tests or vignettes).

Usage

onCran()

Value

logical value TRUE/FALSE


Output function class.

Description

Output function class.

Slots

fun

function or purrr-style lambda formula, first argument 'x' must be the results

args

extra arguments, named list

packages

packages that must be loaded to execute the given function, character vector

level

either 'scenario' or 'replicate'. Default is 'scenario'.


Preprocess ARM column. Add ARM equation in model automatically.

Description

Preprocess ARM column. Add ARM equation in model automatically.

Usage

preprocessArmColumn(dataset, model)

Arguments

dataset current dataset, data frame form
model model

Value

updated model


Pre-process destination engine. Throw an error message if the destination engine is not installed.

Description

Pre-process destination engine. Throw an error message if the destination engine is not installed.

Usage

preprocessDest(dest)

Arguments

Value

'rxode2', 'RxODE' or 'mrgsolve'


Preprocess 'dosing' argument.

Description

Preprocess 'dosing' argument.

Usage

preprocessDosing(dosing)

Arguments

dosing dosing argument, logical value

Value

user value, if not specified, return FALSE (observations only)


Pre-process events.

Description

Pre-process events.

Usage

preprocessEvents(events)

Arguments

events interruption events

Preprocess subjects ID's.

Description

Preprocess subjects ID's.

Usage

preprocessIds(dataset)

Arguments

dataset current dataset, data frame form

Value

list of consecutive ID's


Preprocess 'nocbvars' argument.

Description

Preprocess 'nocbvars' argument.

Usage

preprocessNocbvars(nocbvars)

Arguments

nocbvars nocbvars argument, character vector

Pre-process outfun argument.

Description

Pre-process outfun argument.

Usage

preprocessOutfun(outfun)

Arguments

outfun function, lambda formula or output function object

Value

an output function


Preprocess 'outvars' argument. 'Outvars' is a character vector which tells CAMPSIS the mandatory columns to keep in the output dataframe.

Description

Preprocess 'outvars' argument. 'Outvars' is a character vector which tells CAMPSIS the mandatory columns to keep in the output dataframe.

Usage

preprocessOutvars(outvars)

Arguments

outvars character vector or function

Value

outvars


Preprocess 'replicates' argument.

Description

Preprocess 'replicates' argument.

Usage

preprocessReplicates(replicates, model)

Arguments

replicates number of replicates
model Campsis model (class 'campsis_model' or 'replicated_campsis_model')

Value

number of replicates to simulate


Pre-process scenarios.

Description

Pre-process scenarios.

Usage

preprocessScenarios(scenarios)

Arguments


Preprocess the simulation settings.

Description

Preprocess the simulation settings.

Usage

preprocessSettings(settings, dest)

Arguments

settings simulation settings
dest destination engine

Value

updated simulation settings


Preprocess 'slices' argument.

Description

Preprocess 'slices' argument.

Usage

preprocessSlices(slices, maxID)

Arguments

slices slices argument corresponding to the number of subjects simulated at once

Value

slices if not NULL, otherwise total number of subjects


Preprocess TSLD and TDOS columns according to given dataset configuration.

Description

Preprocess TSLD and TDOS columns according to given dataset configuration.

Usage

preprocessTSLDAndTDOSColumn(table, config)

Arguments

table current table
config dataset config

Value

updated table


Pre-process tablefun argument.

Description

Pre-process tablefun argument.

Usage

preprocessTablefun(fun)

Arguments

fun function or lambda formula

Value

a function in any case


Description

Process time-related columns according to given dataset configuration.

Usage

processAllTimeColumns(table, config)

Arguments

table current table
config dataset config

Value

updated table


Process arm labels. Arm identifiers in ARM column are replaced by arm labels as soon as one arm label is provided.

Description

Process arm labels. Arm identifiers in ARM column are replaced by arm labels as soon as one arm label is provided.

Usage

processArmLabels(campsis, arms)

Arguments

campsis CAMPSIS output
arms all treatment arms

Value

updated CAMPSIS output with arm labels instead of arm identifiers


Process 'DROP_OTHERS'.

Description

Process 'DROP_OTHERS'.

Usage

processDropOthers(x, outvars = character(0), dropOthers)

Arguments

x the current data frame
outvars variables to keep
dropOthers logical value

Value

processed data frame


Preprocess arguments of the simulate method.

Description

Preprocess arguments of the simulate method.

Usage

processSimulateArguments(model, dataset, dest, outvars, dosing, settings)

Arguments

model CAMPSIS model
dataset dataset, data.frame form
dest destination engine
outvars outvars
dosing add dosing information, logical value
settings simulation settings

Value

a simulation configuration


Progress settings class.

Description

Progress settings class.

Slots

tick_slice

tick() is called after each simulated slice, default is TRUE. In some cases, when the number of subjects per slice is low, it may be useful disable this flag, to improve performance issues.


Protocol class.

Description

Protocol class.


Remove initial conditions.

Description

Remove initial conditions.

Usage

removeInitialConditions(model)

Arguments

Value

same model without initial conditions


Reorder output columns.

Description

Reorder output columns.

Usage

reorderColumns(results, dosing)

Arguments

results RxODE/mrgsolve output
dosing dosing information, logical value

Value

reordered dataframe


Repeat schedule.

Description

Repeat schedule.

Usage

repeatSchedule(x, schedule)

## S4 method for signature 'numeric,cyclic_schedule'
repeatSchedule(x, schedule)

## S4 method for signature 'numeric,repeat_at_schedule'
repeatSchedule(x, schedule)

## S4 method for signature 'numeric,undefined_schedule'
repeatSchedule(x, schedule)

Arguments

x object to repeat the schedule
schedule initial times vector

Value

resulting times vector


'Repeat at' schedule class.

Description

'Repeat at' schedule class.

Slots

times

times at which the event is repeated, numeric vector


Repeated schedule class. See this class as an interface.

Description

Repeated schedule class. See this class as an interface.


Retrieve the parameter value (standardized) for the specified parameter name.

Description

Retrieve the parameter value (standardized) for the specified parameter name.

Usage

retrieveParameterValue(model, paramName, default = NULL, mandatory = FALSE)

Arguments

model model
paramName parameter name
default default value if not found
mandatory must be in model or not

Value

the standardized parameter value or the given default value if not found


RxODE/rxode2 engine class.

Description

RxODE/rxode2 engine class.

Slots

rxode2

logical field to indicate if CAMPSIS should use rxode2 (field set to TRUE) or RxODE (field set to FALSE). Default is TRUE.


Sample generic object.

Description

Sample generic object.

Usage

sample(object, n, ...)

## S4 method for signature 'constant_distribution,integer'
sample(object, n)

## S4 method for signature 'fixed_distribution,integer'
sample(object, n)

## S4 method for signature 'function_distribution,integer'
sample(object, n)

## S4 method for signature 'bootstrap_distribution,integer'
sample(object, n)

## S4 method for signature 'bolus,integer'
sample(object, n, ...)

## S4 method for signature 'infusion,integer'
sample(object, n, ...)

## S4 method for signature 'observations,integer'
sample(object, n, ...)

## S4 method for signature 'covariate,integer'
sample(object, n)

## S4 method for signature 'bootstrap,integer'
sample(object, n)

Arguments

object generic object
n number of samples required
... extra arguments

Value

sampling result


Sample covariates list.

Description

Sample covariates list.

Usage

sampleCovariatesList(covariates, ids_within_arm, subset)

Arguments

covariates list of covariates to sample
ids_within_arm ids within the current arm being sampled
subset take subset of original values because export is parallelised

Value

a dataframe of n rows, 1 column per covariate


Sample a distribution and return a tibble.

Description

Sample a distribution and return a tibble.

Usage

sampleDistributionAsTibble(distribution, n, colname)

Arguments

distribution any distribution
n number of desired samples
colname name of the unique column in tibble

Value

a tibble of n rows and 1 column


Sample time-varying covariates.

Description

Sample time-varying covariates.

Usage

sampleTimeVaryingCovariates(object, armID, needsDV)

Arguments

object time-varying covariates, data.frame form
armID treatment arm ID
needsDV append extra column DV, logical value

Value

a data.frame


Scatter plot (or X vs Y plot).

Description

Scatter plot (or X vs Y plot).

Usage

scatterPlot(x, output, colour = NULL, time = NULL)

Arguments

x data frame
output the 2 variables to show, character vector
colour variable(s) to colour
time the time to look at those 2 variables, if NULL, min time is used (usually 0)

Value

a ggplot object


Scenario class.

Description

Scenario class.

Slots

name

scenario name, single character string

model

either a CAMPSIS model, a function or lambda-style formula

dataset

either a CAMPSIS dataset, a function or lambda-style formula


Scenarios class.

Description

Scenarios class.


Convert seconds to hours.

Description

Convert seconds to hours.

Usage

seconds(x)

Arguments

x numeric vector in seconds

Value

numeric vector in hours


Set the label.

Description

Set the label.

Usage

setLabel(object, x)

## S4 method for signature 'arm,character'
setLabel(object, x)

Arguments

object any object that has a label
x the new label

Value

the updated object


Set the seed. The goal of this method is to centralize all calls to the R method 'set.seed'.

Description

Set the seed. The goal of this method is to centralize all calls to the R method 'set.seed'.

Usage

setSeed(seed)

Arguments

seed seed value, not NULL

Set the number of subjects.

Description

Set the number of subjects.

Usage

setSubjects(object, x)

## S4 method for signature 'arm,integer'
setSubjects(object, x)

## S4 method for signature 'dataset,integer'
setSubjects(object, x)

Arguments

object any object
x the new number of subjects

Value

the updated object


Setup default plan for the given simulation or hardware settings. This plan will prioritise the distribution of workers in the following order: 1) Replicates (if 'replicate_parallel' is enabled) 2) Scenarios (if 'scenario_parallel' is enabled) 3) Dataset export / slices (if 'dataset_export' or 'slice_parallel' is enabled)

Description

Setup default plan for the given simulation or hardware settings. This plan will prioritise the distribution of workers in the following order: 1) Replicates (if 'replicate_parallel' is enabled) 2) Scenarios (if 'scenario_parallel' is enabled) 3) Dataset export / slices (if 'dataset_export' or 'slice_parallel' is enabled)

Usage

setupPlanDefault(object)

Arguments

object simulation or hardware settings

Value

nothing


Setup plan as sequential (i.e. no parallelisation).

Description

Setup plan as sequential (i.e. no parallelisation).

Usage

setupPlanSequential()

Value

nothing


Shaded plot (or prediction interval plot).

Description

Shaded plot (or prediction interval plot).

Usage

shadedPlot(
  x,
  output,
  colour = NULL,
  strat_extra = NULL,
  level = 0.9,
  alpha = 0.25
)

Arguments

x data frame
output variable to show
colour variable(s) to colour
strat_extra variable(s) to stratify, but not to colour (useful for use with facet_wrap)
level PI level, default is 0.9 (90% PI)
alpha alpha parameter (transparency) given to geom_ribbon

Value

a ggplot object


Simulate function.

Description

Simulate function.

Usage

simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'replicated_campsis_model,
##   dataset,
##   character,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'campsis_model,
##   dataset,
##   character,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'campsis_model,
##   tbl_df,
##   character,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'campsis_model,
##   data.frame,
##   character,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'campsis_model,
##   tbl_df,
##   rxode_engine,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

## S4 method for signature 
## 'campsis_model,
##   tbl_df,
##   mrgsolve_engine,
##   events,
##   scenarios,
##   function,
##   character,
##   output_function,
##   integer,
##   integer,
##   logical,
##   simulation_settings'
simulate(
  model,
  dataset,
  dest = NULL,
  events = NULL,
  scenarios = NULL,
  tablefun = NULL,
  outvars = NULL,
  outfun = NULL,
  seed = NULL,
  replicates = 1,
  dosing = FALSE,
  settings = NULL
)

Arguments

model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
scenarios list of scenarios to be simulated
tablefun function or lambda formula to apply on exported 2-dimensional dataset
outvars variables to output in resulting dataframe
outfun an output function to apply on the simulation results. Type ?Outfun for more info.
seed seed value
replicates number of replicates, default is 1
dosing output dosing information, default is FALSE
settings advanced simulation settings

Value

dataframe with all results


Simulation delegate (several replicates).

Description

Simulation delegate (several replicates).

Usage

simulateDelegate(
  model,
  dataset,
  dest,
  events,
  scenarios,
  tablefun,
  outvars,
  outfun,
  seed,
  replicates,
  dosing,
  settings
)

Arguments

model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
scenarios list of scenarios to be simulated
tablefun function or lambda formula to apply on exported 2-dimensional dataset
outvars variables to output in resulting dataframe
outfun an output function to apply on the simulation results. Type ?Outfun for more info.
seed seed value
replicates number of replicates, default is 1
dosing output dosing information, default is FALSE
settings advanced simulation settings

Value

a data frame with the results


Simulation delegate core (single replicate).

Description

Simulation delegate core (single replicate).

Usage

simulateDelegateCore(
  model,
  dataset,
  dest,
  events,
  tablefun,
  outvars,
  outfun,
  seed,
  replicates,
  dosing,
  settings
)

Arguments

model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
tablefun function or lambda formula to apply on exported 2-dimensional dataset
outvars variables to output in resulting dataframe
outfun an output function to apply on the simulation results. Type ?Outfun for more info.
seed seed value
replicates number of replicates, default is 1
dosing output dosing information, default is FALSE
settings advanced simulation settings

Value

a data frame with the results


Simulation scenarios.

Description

Simulation scenarios.

Usage

simulateScenarios(
  scenarios,
  model,
  dataset,
  dest,
  events,
  tablefun,
  outvars,
  outfun,
  seed,
  replicates,
  dosing,
  settings
)

Arguments

scenarios list of scenarios to be simulated
model generic CAMPSIS model
dataset CAMPSIS dataset or 2-dimensional table
dest destination simulation engine, default is 'RxODE'
events interruption events
tablefun function or lambda formula to apply on exported 2-dimensional dataset
outvars variables to output in resulting dataframe
outfun an output function to apply on the simulation results. Type ?Outfun for more info.
seed seed value
replicates number of replicates, default is 1
dosing output dosing information, default is FALSE
settings advanced simulation settings

Value

a data frame with the results


Simulation engine class.

Description

Simulation engine class.


Simulation progress class.

Description

Simulation progress class.

Arguments

replicates total number of replicates to simulate
scenarios total number of scenarios to simulate
iterations total number of iterations to simulate
slices total number of slices to simulate
replicate current replicate number being simulated
scenario current scenario number being simulated
iteration current iteration number being simulated
slice current slice number being simulated
progressor progressr progressor
hardware hardware settings

Simulation settings class.

Description

Simulation settings class.

Slots

hardware

hardware settings object

solver

solver settings object

nocb

NOCB settings object

declare

declare settings (mrgsolve only)

progress

progress settings

replication

replication settings

internal

internal settings


Solver settings class. See ?mrgsolve::update. See ?rxode2::rxSolve.

Description

Solver settings class. See ?mrgsolve::update. See ?rxode2::rxSolve.

Slots

atol

absolute solver tolerance, default is 1e-08

rtol

relative solver tolerance, default is 1e-08

hmax

limit how big a solver step can be, default is NA

maxsteps

max steps between 2 integration times (e.g. when observations records are far apart), default is 70000

method

solver method, for RxODE/rxode2 only: 'liblsoda' (default), 'lsoda', 'dop853', 'indLin'. Mrgsolve's method is always 'lsoda'.


Spaghetti plot.

Description

Spaghetti plot.

Usage

spaghettiPlot(x, output, colour = NULL)

Arguments

x data frame
output variable to show
colour variable(s) to colour

Value

plot


Split dataset according to config.

Description

Split dataset according to config.

Usage

splitDataset(dataset, config)

Arguments

dataset Campsis dataset to export
config current iteration in future_map_dfr

Value

a subset of the given dataset


Standardise time to hours.

Description

Standardise time to hours.

Usage

standardiseTime(x, unit)

Arguments

x numeric time vector
unit unit of x, single character value

Value

numeric vector with the times converted to hours


Time-varying covariate class.

Description

Time-varying covariate class.


Convert dataset to dataset summary (internal method).

Description

Convert dataset to dataset summary (internal method).

Usage

toDatasetSummary(dataset)

Value

a dataset summary


Convert user-given distribution to an explicit CAMPSIS distribution. Passed distribution can be: - a NULL value. In that case, it will be converted into an 'UndefinedDistribution'. - a single numeric value. In that case, it will be converted into a 'ConstantDistribution'. - a numeric vector. In that case, it will be converted into a 'FixedDistribution'. - all available types of distribution. In this case, no conversion is applied.

Description

Convert user-given distribution to an explicit CAMPSIS distribution. Passed distribution can be: - a NULL value. In that case, it will be converted into an 'UndefinedDistribution'. - a single numeric value. In that case, it will be converted into a 'ConstantDistribution'. - a numeric vector. In that case, it will be converted into a 'FixedDistribution'. - all available types of distribution. In this case, no conversion is applied.

Usage

toExplicitDistribution(distribution)

Arguments

distribution user-given distribution

Value

a distribution object


Treatment class.

Description

Treatment class.


Treatment IOV class.

Description

Treatment IOV class.

Slots

colname

name of the column that will be output in dataset

distribution

distribution

dose_numbers

associated dose numbers, integer vector, same length as values


Treatment IOV's class.

Description

Treatment IOV's class.


Undefined distribution class. This type of object is automatically created in method toExplicitDistribution() when the user does not provide a concrete distribution. This is because S4 objects do not accept NULL values.

Description

Undefined distribution class. This type of object is automatically created in method toExplicitDistribution() when the user does not provide a concrete distribution. This is because S4 objects do not accept NULL values.


Undefined schedule class.

Description

Undefined schedule class.


Unite the given column names.

Description

Unite the given column names.

Usage

uniteColumns(x, columns, colname, factor = TRUE)

Arguments

x data frame, CAMPSIS output
columns columns to unify
colname destination column name
factor factor the destination column

Value

a data frame


Unwrap treatment.

Description

Unwrap treatment.

Usage

unwrapTreatment(object)

## S4 method for signature 'bolus'
unwrapTreatment(object)

## S4 method for signature 'infusion'
unwrapTreatment(object)

## S4 method for signature 'bolus_wrapper'
unwrapTreatment(object)

## S4 method for signature 'infusion_wrapper'
unwrapTreatment(object)

## S4 method for signature 'treatment'
unwrapTreatment(object)

## S4 method for signature 'arm'
unwrapTreatment(object)

## S4 method for signature 'arms'
unwrapTreatment(object)

## S4 method for signature 'dataset'
unwrapTreatment(object)

Arguments

Value

updated object


Update the number of additional doses (ADDL).

Description

Update the number of additional doses (ADDL).

Usage

updateADDL(object, addl, ref = NULL)

## S4 method for signature 'bolus_wrapper,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'infusion_wrapper,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'bolus,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'infusion,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'treatment,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'arm,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'arms,integer,character'
updateADDL(object, addl, ref = NULL)

## S4 method for signature 'dataset,integer,character'
updateADDL(object, addl, ref = NULL)

Arguments

object generic object
addl new number of additional doses
ref reference treatment name

Value

updated object


Update amount.

Description

Update amount.

Usage

updateAmount(object, amount, ref)

## S4 method for signature 'bolus,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'infusion,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'bolus_wrapper,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'infusion_wrapper,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'treatment,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'arm,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'arms,numeric,character'
updateAmount(object, amount, ref)

## S4 method for signature 'dataset,numeric,character'
updateAmount(object, amount, ref)

Arguments

object generic object
amount new amount
ref reference treatment name

Value

updated object


Update the inter-dose interval (II).

Description

Update the inter-dose interval (II).

Usage

updateII(object, ii, ref = NULL)

## S4 method for signature 'bolus_wrapper,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'infusion_wrapper,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'bolus,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'infusion,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'treatment,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'arm,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'arms,numeric,character'
updateII(object, ii, ref = NULL)

## S4 method for signature 'dataset,numeric,character'
updateII(object, ii, ref = NULL)

Arguments

object generic object
ii new inter-dose interval
ref reference treatment name

Value

updated object


Update the repeat field (argument 'rep' in Bolus and Infusion constructors).

Description

Update the repeat field (argument 'rep' in Bolus and Infusion constructors).

Usage

updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'bolus_wrapper,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'infusion_wrapper,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'bolus,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'infusion,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'treatment,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'arm,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'arms,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

## S4 method for signature 'dataset,repeated_schedule,character'
updateRepeat(object, rep, ref = NULL)

Arguments

object generic object
rep repeated dosing schedule (definition) object
ref reference treatment name

Value

updated object


VPC plot.

Description

VPC plot.

Usage

vpcPlot(x, scenarios = NULL, level = 0.9, alpha = 0.15)

Arguments

x data frame, output of CAMPSIS with replicates
scenarios scenarios, character vector, NULL is default
level PI level, default is 0.9 (90% PI)
alpha alpha parameter (transparency) given to geom_ribbon

Value

a ggplot object


Convert weeks to hours.

Description

Convert weeks to hours.

Usage

weeks(x)

Arguments

x numeric vector in weeks

Value

numeric vector in hours


Convert pharma years (1 year = 12*4 weeks) to hours.

Description

Convert pharma years (1 year = 12*4 weeks) to hours.

Usage

years(x)

Arguments

x numeric vector in years

Value

numeric vector in hours