codacore: Learning Sparse Log-Ratios for Compositional Data (original) (raw)
In the context of high-throughput genetic data, CoDaCoRe identifies a set of sparse biomarkers that are predictive of a response variable of interest (Gordon-Rodriguez et al., 2021) <doi:10.1093/bioinformatics/btab645>. More generally, CoDaCoRe can be applied to any regression problem where the independent variable is Compositional (CoDa), to derive a set of scale-invariant log-ratios (ILR or SLR) that are maximally associated to a dependent variable.
Version: | 0.0.4 |
---|---|
Depends: | R (≥ 3.6.0) |
Imports: | tensorflow (≥ 2.1), keras (≥ 2.3), pROC (≥ 1.17), R6 (≥ 2.5), gtools (≥ 3.8) |
Suggests: | zCompositions, testthat (≥ 2.1.0), knitr, rmarkdown |
Published: | 2022-08-29 |
DOI: | 10.32614/CRAN.package.codacore |
Author: | Elliott Gordon-Rodriguez [aut, cre], Thomas Quinn [aut] |
Maintainer: | Elliott Gordon-Rodriguez |
License: | MIT + file |
NeedsCompilation: | no |
SystemRequirements: | TensorFlow (https://www.tensorflow.org/) |
Citation: | codacore citation info |
Materials: | README NEWS |
In views: | CompositionalData |
CRAN checks: | codacore results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=codacoreto link to this page.