doi:10.1016/j.jmp.2023.102756>).">

dRiftDM: Estimating (Time-Dependent) Drift Diffusion Models (original) (raw)

Fit and explore Drift Diffusion Models (DDMs), a common tool in psychology for describing decision processes in simple tasks. It can handle both time-independent and time-dependent DDMs. You either choose prebuilt models or create your own, and the package takes care of model predictions and parameter estimation. Model predictions are derived via the numerical solutions provided by Richter, Ulrich, and Janczyk (2023, <doi:10.1016/j.jmp.2023.102756>).

Version: 0.2.2
Depends: R (≥ 4.1.0)
Imports: withr, parallel, DEoptim, dfoptim, Rcpp, Rdpack, progress, stats, lifecycle
LinkingTo: Rcpp
Suggests: testthat (≥ 3.0.0), cowsay, knitr, rmarkdown, DMCfun, truncnorm, vdiffr
Published: 2025-03-04
DOI: 10.32614/CRAN.package.dRiftDM
Author: Valentin Koob [cre, aut, cph], Thomas Richter [aut, cph], Markus Janczyk [aut]
Maintainer: Valentin Koob <v.koob at web.de>
BugReports: https://github.com/bucky2177/dRiftDM/issues
License: MIT + file
URL: https://github.com/bucky2177/dRiftDM,https://bucky2177.github.io/dRiftDM/
NeedsCompilation: yes
Citation: dRiftDM citation info
Materials: README, NEWS
CRAN checks: dRiftDM results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dRiftDMto link to this page.