Help for package deepnet (original) (raw)

Type: Package
Title: Deep Learning Toolkit in R
Version: 0.2.1
Date: 2014-03-20
Author: Xiao Rong
Maintainer: Xiao Rong runxiao@gmail.com
Description: Implement some deep learning architectures and neural network algorithms, including BP,RBM,DBN,Deep autoencoder and so on.
License: GPL-2 | GPL-3 [expanded from: GPL]
Packaged: 2022-06-24 12:10:21 UTC; hornik
NeedsCompilation: no
Repository: CRAN
Date/Publication: 2022-06-24 12:29:27 UTC

Training a Deep neural network with weights initialized by DBN

Description

Training a Deep neural network with weights initialized by DBN

Usage

dbn.dnn.train(x, y, hidden = c(1), activationfun = "sigm", learningrate = 0.8, 
    momentum = 0.5, learningrate_scale = 1, output = "sigm", numepochs = 3, 
    batchsize = 100, hidden_dropout = 0, visible_dropout = 0, cd = 1)

Arguments

x matrix of x values for examples
y vector or matrix of target values for examples
hidden vector for number of units of hidden layers.Default is c(10).
activationfun activation function of hidden unit.Can be "sigm","linear" or "tanh".Default is "sigm" for logistic function
learningrate learning rate for gradient descent. Default is 0.8.
momentum momentum for gradient descent. Default is 0.5 .
learningrate_scale learning rate will be mutiplied by this scale after every iteration. Default is 1 .
numepochs number of iteration for samples Default is 3.
batchsize size of mini-batch. Default is 100.
output function of output unit, can be "sigm","linear" or "softmax". Default is "sigm".
hidden_dropout drop out fraction for hidden layer. Default is 0.
visible_dropout drop out fraction for input layer Default is 0.
cd number of iteration for Gibbs sample of CD algorithm.

Author(s)

Xiao Rong

Examples

Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
dnn <- dbn.dnn.train(x, y, hidden = c(5, 5))
## predict by dnn
test_Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
test_Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
test_x <- matrix(c(test_Var1, test_Var2), nrow = 100, ncol = 2)
nn.test(dnn, test_x, y)

Load MNIST DataSet

Description

Load MNIST DataSet

Usage

load.mnist(dir)

Arguments

Value

mnist dataset train$n number of train samples train$x pix of every train sample image train$y label of every train sample image train$yy one-of-c vector of label of train sample image test$n number of test samples test$x pix of every test sample image test$y label of every test sample image test$yy one-of-c vector of label of test sample image

Author(s)

Xiao Rong


Predict new samples by Trainded NN

Description

Predict new samples by Trainded NN

Usage

nn.predict(nn, x)

Arguments

nn nerual network trained by function nn.train
x new samples to predict

Value

return raw output value of neural network.For classification task,return the probability of a class

Author(s)

Xiao Rong

Examples

Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
nn <- nn.train(x, y, hidden = c(5))
## predict by nn
test_Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
test_Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
test_x <- matrix(c(test_Var1, test_Var2), nrow = 100, ncol = 2)
yy <- nn.predict(nn, test_x)

Test new samples by Trainded NN

Description

Test new samples by Trainded NN,return error rate for classification

Usage

nn.test(nn, x, y, t = 0.5)

Arguments

nn nerual network trained by function nn.train
x new samples to predict
y new samples' label
t threshold for classification. If nn.predict value >= t then label 1,else label 0

Value

error rate

Author(s)

Xiao Rong

Examples

Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
nn <- nn.train(x, y, hidden = c(5))
test_Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
test_Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
test_x <- matrix(c(test_Var1, test_Var2), nrow = 100, ncol = 2)
err <- nn.test(nn, test_x, y)

Training Neural Network

Description

Training single or mutiple hidden layers neural network by BP

Usage

nn.train(x, y, initW = NULL, initB = NULL, hidden = c(10), activationfun = "sigm", 
    learningrate = 0.8, momentum = 0.5, learningrate_scale = 1, output = "sigm", 
    numepochs = 3, batchsize = 100, hidden_dropout = 0, visible_dropout = 0)

Arguments

x matrix of x values for examples
y vector or matrix of target values for examples
initW initial weights. If missing chosen at random
initB initial bias. If missing chosen at random
hidden vector for number of units of hidden layers.Default is c(10).
activationfun activation function of hidden unit.Can be "sigm","linear" or "tanh".Default is "sigm" for logistic function
learningrate learning rate for gradient descent. Default is 0.8.
momentum momentum for gradient descent. Default is 0.5 .
learningrate_scale learning rate will be mutiplied by this scale after every iteration. Default is 1 .
numepochs number of iteration for samples Default is 3.
batchsize size of mini-batch. Default is 100.
output function of output unit, can be "sigm","linear" or "softmax". Default is "sigm".
hidden_dropout drop out fraction for hidden layer. Default is 0.
visible_dropout drop out fraction for input layer Default is 0.

Author(s)

Xiao Rong

Examples

Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
nn <- nn.train(x, y, hidden = c(5))

Generate visible vector by hidden units states

Description

Generate visible vector by hidden units states

Usage

rbm.down(rbm, h)

Arguments

rbm an rbm object trained by function train.rbm
h hidden units states

Value

generated visible vector

Author(s)

Xiao Rong

Examples

Var1 <- c(rep(1, 50), rep(0, 50))
Var2 <- c(rep(0, 50), rep(1, 50))
x3 <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 <- rbm.train(x3, 3, numepochs = 20, cd = 10)
h <- c(0.2, 0.8, 0.1)
v <- rbm.down(r1, h)

Training a RBM(restricted Boltzmann Machine)

Description

Training a RBM(restricted Boltzmann Machine)

Usage

rbm.train(x, hidden, numepochs = 3, batchsize = 100, learningrate = 0.8, 
    learningrate_scale = 1, momentum = 0.5, visible_type = "bin", hidden_type = "bin", 
    cd = 1)

Arguments

x matrix of x values for examples
hidden number of hidden units
visible_type activation function of input unit.Only support "sigm" now
hidden_type activation function of hidden unit.Only support "sigm" now
learningrate learning rate for gradient descent. Default is 0.8.
momentum momentum for gradient descent. Default is 0.5 .
learningrate_scale learning rate will be mutiplied by this scale after every iteration. Default is 1 .
numepochs number of iteration for samples Default is 3.
batchsize size of mini-batch. Default is 100.
cd number of iteration for Gibbs sample of CD algorithm.

Author(s)

Xiao Rong

Examples

Var1 <- c(rep(1, 50), rep(0, 50))
Var2 <- c(rep(0, 50), rep(1, 50))
x3 <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 <- rbm.train(x3, 10, numepochs = 20, cd = 10)

Infer hidden units state by visible units

Description

Infer hidden units states by visible units

Usage

rbm.up(rbm, v)

Arguments

rbm an rbm object trained by function train.rbm
v visible units states

Value

hidden units states

Author(s)

Xiao Rong

Examples

Var1 <- c(rep(1, 50), rep(0, 50))
Var2 <- c(rep(0, 50), rep(1, 50))
x3 <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
r1 <- rbm.train(x3, 3, numepochs = 20, cd = 10)
v <- c(0.2, 0.8)
h <- rbm.up(r1, v)

Training a Deep neural network with weights initialized by Stacked AutoEncoder

Description

Training a Deep neural network with weights initialized by Stacked AutoEncoder

Usage

sae.dnn.train(x, y, hidden = c(1), activationfun = "sigm", learningrate = 0.8, 
    momentum = 0.5, learningrate_scale = 1, output = "sigm", sae_output = "linear", 
    numepochs = 3, batchsize = 100, hidden_dropout = 0, visible_dropout = 0)

Arguments

x matrix of x values for examples
y vector or matrix of target values for examples
hidden vector for number of units of hidden layers.Default is c(10).
activationfun activation function of hidden unit.Can be "sigm","linear" or "tanh".Default is "sigm" for logistic function
learningrate learning rate for gradient descent. Default is 0.8.
momentum momentum for gradient descent. Default is 0.5 .
learningrate_scale learning rate will be mutiplied by this scale after every iteration. Default is 1 .
numepochs number of iteration for samples Default is 3.
batchsize size of mini-batch. Default is 100.
output function of output unit, can be "sigm","linear" or "softmax". Default is "sigm".
sae_output function of autoencoder output unit, can be "sigm","linear" or "softmax". Default is "linear".
hidden_dropout drop out fraction for hidden layer. Default is 0.
visible_dropout drop out fraction for input layer Default is 0.

Author(s)

Xiao Rong

Examples

Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
x <- matrix(c(Var1, Var2), nrow = 100, ncol = 2)
y <- c(rep(1, 50), rep(0, 50))
dnn <- sae.dnn.train(x, y, hidden = c(5, 5))
## predict by dnn
test_Var1 <- c(rnorm(50, 1, 0.5), rnorm(50, -0.6, 0.2))
test_Var2 <- c(rnorm(50, -0.8, 0.2), rnorm(50, 2, 1))
test_x <- matrix(c(test_Var1, test_Var2), nrow = 100, ncol = 2)
nn.test(dnn, test_x, y)