doi:10.1007/978-3-030-86523-8_1> and Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as autoregressive DCTMs (Ruegamer et al, 2023, <doi:10.1007/s11222-023-10212-8>) and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>) are implemented. The software package is described in Kook et al (2024, <doi:10.18637/jss.v111.i10>).">

deeptrafo: Fitting Deep Conditional Transformation Models (original) (raw)

Allows for the specification of deep conditional transformation models (DCTMs) and ordinal neural network transformation models, as described in Baumann et al (2021) <doi:10.1007/978-3-030-86523-8_1> and Kook et al (2022) <doi:10.1016/j.patcog.2021.108263>. Extensions such as autoregressive DCTMs (Ruegamer et al, 2023, <doi:10.1007/s11222-023-10212-8>) and transformation ensembles (Kook et al, 2022, <doi:10.48550/arXiv.2205.12729>) are implemented. The software package is described in Kook et al (2024, <doi:10.18637/jss.v111.i10>).

Version: 1.0-0
Depends: R (≥ 4.0.0), tensorflow (≥ 2.2.0), keras (≥ 2.2.0), tfprobability (≥ 0.15), deepregression (≥ 2.2.0)
Imports: mlt, data.table, variables, stats, purrr, survival, R6, Formula, reticulate
Suggests: testthat, knitr, ordinal, tram, cotram, covr
Published: 2024-12-03
DOI: 10.32614/CRAN.package.deeptrafo
Author: Lucas Kook [aut, cre], Philipp Baumann [aut], David Ruegamer [aut]
Maintainer: Lucas Kook <lucasheinrich.kook at gmail.com>
BugReports: https://github.com/neural-structured-additive-learning/deeptrafo/issues
License: GPL-3
URL: https://github.com/neural-structured-additive-learning/deeptrafo
NeedsCompilation: no
Citation: deeptrafo citation info
CRAN checks: deeptrafo results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=deeptrafoto link to this page.