doi:10.1002/env.2848> for distinguishing forest and non-forest terrain images. Under these algorithms, there are frequentist approaches: one parametric, using stable distributions, and another one- non-parametric, using the squared Mahalanobis distance. The package also contains functions for data handling and building of new classifiers as well as some test data set.">

deforestable: Classify RGB Images into Forest or Non-Forest (original) (raw)

Implements two out-of box classifiers presented in <doi:10.1002/env.2848> for distinguishing forest and non-forest terrain images. Under these algorithms, there are frequentist approaches: one parametric, using stable distributions, and another one- non-parametric, using the squared Mahalanobis distance. The package also contains functions for data handling and building of new classifiers as well as some test data set.

Version: 3.1.2
Depends: R (≥ 4.1.0)
Imports: terra, jpeg, plyr, StableEstim, Rcpp (≥ 1.0.9)
LinkingTo: Rcpp, RcppArmadillo
Suggests: testthat (≥ 3.0.0)
Published: 2025-10-19
DOI: 10.32614/CRAN.package.deforestable
Author: Jesper Muren ORCID iD [aut], Dmitry Otryakhin ORCID iD [aut, cre]
Maintainer: Dmitry Otryakhin <d.otryakhin.acad at protonmail.ch>
License: GPL-3
NeedsCompilation: yes
SystemRequirements: GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>= 4.9.3), sqlite3
Citation: deforestable citation info
CRAN checks: deforestable results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=deforestableto link to this page.