doi:10.1093/bioadv/vbac041> of the Depth Importance in Precision Medicine (DIPM) method in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification tree that searches for subgroups with especially poor or strong performance in a given treatment group.">

dipm: Depth Importance in Precision Medicine (DIPM) Method (original) (raw)

An implementation by Chen, Li, and Zhang (2022) <doi:10.1093/bioadv/vbac041> of the Depth Importance in Precision Medicine (DIPM) method in Chen and Zhang (2022) <doi:10.1093/biostatistics/kxaa021> and Chen and Zhang (2020) <doi:10.1007/978-3-030-46161-4_16>. The DIPM method is a classification tree that searches for subgroups with especially poor or strong performance in a given treatment group.

Version: 1.12
Depends: R (≥ 3.0.0)
Imports: stats, utils, survival, partykit (≥ 1.2-6), ggplot2, rlang, grid
Published: 2025-11-10
DOI: 10.32614/CRAN.package.dipm
Author: Cai Li [aut, cre], Victoria Chen [aut], Heping Zhang [aut]
Maintainer: Cai Li <cai.li.stats at gmail.com>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: yes
In views: MachineLearning
CRAN checks: dipm results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=dipmto link to this page.