https://openreview.net/forum?id=oapKSVM2bcj>.">

einops: Flexible, Powerful, and Readable Tensor Operations (original) (raw)

Perform tensor operations using a concise yet expressive syntax inspired by the Python library of the same name. Reshape, rearrange, and combine multidimensional arrays for scientific computing, machine learning, and data analysis. Einops simplifies complex manipulations, making code more maintainable and intuitive. The original implementation is demonstrated in Rogozhnikov (2022) <https://openreview.net/forum?id=oapKSVM2bcj>.

Version: 0.2.1
Depends: R (≥ 3.5)
Imports: assertthat, FastUtils, glue, magrittr, r2r, R6, roperators
Suggests: abind, grid, imager, knitr, lifecycle, lintr, lobstr, rmarkdown, spelling, testthat (≥ 3.0.0), torch, zeallot
Published: 2025-09-03
DOI: 10.32614/CRAN.package.einops
Author: Qile Yang ORCID iD [cre, aut, cph]
Maintainer: Qile Yang <qile.yang at berkeley.edu>
BugReports: https://github.com/Qile0317/einops/issues
License: MIT + file
URL: https://github.com/Qile0317/einops,https://qile0317.github.io/einops/
NeedsCompilation: no
Language: en-US
Citation: einops citation info
Materials: README, NEWS
CRAN checks: einops results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=einopsto link to this page.