envoutliers: Methods for Identification of Outliers in Environmental Data (original) (raw)
Three semi-parametric methods for detection of outliers in environmental data based on kernel regression and subsequent analysis of smoothing residuals. The first method (Campulova, Michalek, Mikuska and Bokal (2018) <doi:10.1002/cem.2997>) analyzes the residuals using changepoint analysis, the second method is based on control charts (Campulova, Veselik and Michalek (2017) <doi:10.1016/j.apr.2017.01.004>) and the third method (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>) analyzes the residuals using extreme value theory (Holesovsky, Campulova and Michalek (2018) <doi:10.1016/j.apr.2017.06.005>).
| Version: | 1.1.0 |
|---|---|
| Imports: | MASS, car, changepoint, ecp, graphics, ismev, lokern, robustbase, stats |
| Suggests: | openair |
| Published: | 2020-05-07 |
| DOI: | 10.32614/CRAN.package.envoutliers |
| Author: | Martina Campulova [cre], Martina Campulova [aut], Roman Campula [ctb] |
| Maintainer: | Martina Campulova <martina.campulova at mendelu.cz> |
| License: | GPL-2 |
| NeedsCompilation: | no |
| Citation: | envoutliers citation info |
| Materials: | |
| In views: | AnomalyDetection |
| CRAN checks: | envoutliers results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=envoutliersto link to this page.