doi:10.1186/s13059-019-1861-6>.">

fastglmpca: Fast Algorithms for Generalized Principal Component Analysis (original) (raw)

Implements fast, scalable optimization algorithms for fitting generalized principal components analysis (GLM-PCA) models, as described in "A Generalization of Principal Components Analysis to the Exponential Family" Collins M, Dasgupta S, Schapire RE (2002, ISBN:9780262271738), and subsequently "Feature Selection and Dimension Reduction for Single-Cell RNA-Seq Based on a Multinomial Model" Townes FW, Hicks SC, Aryee MJ, Irizarry RA (2019) <doi:10.1186/s13059-019-1861-6>.

Version: 0.1-108
Depends: R (≥ 3.6)
Imports: utils, Matrix, stats, distr, daarem, Rcpp (≥ 1.0.8), RcppParallel (≥ 5.1.5)
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: testthat, knitr, rmarkdown, ggplot2, cowplot
Published: 2025-03-13
DOI: 10.32614/CRAN.package.fastglmpca
Author: Eric Weine [aut, cre], Peter Carbonetto [aut], Matthew Stephens [aut]
Maintainer: Eric Weine
BugReports: https://github.com/stephenslab/fastglmpca/issues
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
URL: https://github.com/stephenslab/fastglmpca
NeedsCompilation: yes
SystemRequirements: GNU make
Materials: NEWS
CRAN checks: fastglmpca results

Documentation:

Downloads:

Linking:

Please use the canonical formhttps://CRAN.R-project.org/package=fastglmpcato link to this page.