geocausal: Causal Inference with Spatio-Temporal Data (original) (raw)
Spatio-temporal causal inference based on point process data. You provide the raw data of locations and timings of treatment and outcome events, specify counterfactual scenarios, and the package estimates causal effects over specified spatial and temporal windows. See Papadogeorgou, et al. (2022) <doi:10.1111/rssb.12548> and Mukaigawara, et al. (2024) <doi:10.31219/osf.io/5kc6f>.
| Version: | 0.3.4 |
|---|---|
| Depends: | R (≥ 3.5.0) |
| Imports: | data.table, dplyr, furrr, ggplot2, ggpubr, latex2exp, mclust, progressr, purrr, sf, spatstat.explore, spatstat.geom, spatstat.model, spatstat.univar, terra, tidyr, tidyselect, tidyterra |
| Suggests: | elevatr, geosphere, gridExtra, ggthemes, knitr, readr, gridGraphics |
| Published: | 2025-01-07 |
| DOI: | 10.32614/CRAN.package.geocausal |
| Author: | Mitsuru Mukaigawara |
| Maintainer: | Mitsuru Mukaigawara <mitsuru_mukaigawara at g.harvard.edu> |
| License: | MIT + file |
| URL: | https://github.com/mmukaigawara/geocausal |
| NeedsCompilation: | no |
| Materials: | README, NEWS |
| CRAN checks: | geocausal results |
Documentation:
Downloads:
Linking:
Please use the canonical formhttps://CRAN.R-project.org/package=geocausalto link to this page.